首页|基于PH-GAT的精分患者分类预测模型研究

基于PH-GAT的精分患者分类预测模型研究

扫码查看
对目前基于脑网络的分析进行研究,研究显示,分析方法大致分为基于持续同调方法的分析和基于深度学习模型的分析。为了提高脑疾病诊断的预测能力,模型将持续同调集成到GAT模型中,使其具有"拓扑意识"。在模型的最后使用LSTM模型,目的是为了捕捉到所形成特征中的时序信息,从而提高分类预测的效果。在PH-GAT模型下,采用局部和全局的融合特征对Theta频段数据分类,分类准确率高达 0。930 9。如此不仅可以发现早期诊断精神分裂症的客观、有效的影像学标志物,还可以提高脑疾病诊断的预测能力。
Research on a Classification Prediction Model for Schizophrenic Patients Based on PH-GAT
This paper studies the current analysis based on cerebral network,the study shows that the analysis methods can be broadly categorized into two main approaches:analysis based on continuous homotopy methods and analysis based on Deep Learning models.In order to enhance the predictive capabilities of brain disease diagnosis,this model incorporates continuous homotopy into the GAT model,endowing it with a"topological awareness".Towards the end of the model,the Long Short-Term Memory(LSTM)model is employed to capture temporal information embedded within the extracted features,thereby enhancing the effectiveness of classification prediction.Under the PH-GAT model,a fusion of local and global features is applied for classifying data in the Theta frequency range,achieving a high classification accuracy of 0.930 9.This approach not only enables the discovery of objective and effective imaging biomarkers for early schizophrenia diagnosis,but also enhances the predictive capabilities of brain disease diagnosis.

cerebral networkcontinuous homotopyGraph Attention Networkschizophrenia

盛志林、阴桂梅、符永灿

展开 >

太原师范学院计算机科学与技术学院,山西 晋中 030619

脑网络 持续同调 图注意力网络 精神分裂症

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(7)
  • 16