首页|基于预训练语言模型的旅游评论文本方面级情感分析研究

基于预训练语言模型的旅游评论文本方面级情感分析研究

扫码查看
为了促进旅游行业的消费和经济发展,对游客在线上平台发表的景区评论文本进行分析,深入挖掘其中的细粒度情感信息,以更好地迎合游客的偏好。在实际场景中,一个句子会涉及多个实体词,致使难以准确识别它们对应的情感属性关系;且旅游场景下的数据集存在稀缺和样本不平衡问题。由此构建了基于深度学习和提示知识的预训练语言模型,通过构建离散提示模板联合训练两个子任务,并对数据集中的少数样本进行了数据增强处理,同时在训练阶段为损失函数设置不同的权重。实验结果显示,模型在旅游评论文本数据集和公开数据集SemEval2014_Restaruant上取得了显著效果,F1值分别达到了80。81%和83。71%,有助于旅游机构实现对每个城市景点的个性化分析。
Aspect-based Sentiment Analysis Research of Tourism Review Text Based on Pre-trained Language Models
In order to promote consumption in the tourism industry and economic development,we analyze the scenic spot comment texts published by tourists on online platforms,and deeply explore the fine-grained emotional information in them,in order to better cater to the preferences of tourists.In actual scenarios,a sentence may involve multiple entity words,making it difficult to accurately identify their corresponding emotional attribute relationships.Moreover,there are issues of scarcity and imbalanced samples in the dataset of tourism scenarios.A pre-trained language model based on Deep Learning and prompt knowledge is constructed.Two sub tasks are jointly trained by constructing a discrete prompt template,and data augmentation is performed on a few samples in the dataset.At the same time,different weights are set for the loss function during the training phase.The experimental results show that the model has achieved significant results on the tourism review text dataset and the public dataset SemEval2014-Restarantt,with F1 values reaching 80.81%and 83.71%,respectively,which helps tourism institutions to achieve personalized analysis of each city's scenic spots.

language modelprompt learningaspect-based sentiment analysispre-trained model

谢宇欣、肖克晶、曹少中、张寒、姜丹

展开 >

北京印刷学院,北京 102600

语言模型 提示学习 方面级情感分析 预训练模型

&&

27170123034

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(7)
  • 11