首页|基于实时反馈强化学习神经网络的船舶艏摇智能控制研究

基于实时反馈强化学习神经网络的船舶艏摇智能控制研究

扫码查看
文章提出了一种基于实时反馈强化学习神经网络控制的船舶艏摇智能控制方法。该方法将神经网络的非线性建模和强化学习的自适应控制技术相结合,能够实现对船舶航行过程中舵角的精确控制。并将PID控制算法、模型预测控制算法和实时反馈强化学习神经网络控制算法进行对比分析,仿真实验结果表明,后者在控制效果和稳定性方面均优于前两种方法,能够有效地提高船舶航行过程中舵角的控制精度和鲁棒性。
Research on Intelligent Control of Ship Yaw Based on Real-time Feedback Reinforcement Learning Neural Network
This paper proposes an intelligent control method for ship yaw based on real-time feedback reinforcement learning neural network control.This method combines nonlinear modeling of neural networks with adaptive control technology of reinforcement learning to achieve precise control of rudder angle during ship navigation.And the PID control algorithm,model prediction control algorithm,and real-time feedback reinforcement learning neural network control algorithm are compared and analyzed.The simulation experiment results show that the latter is superior to the previous two methods in control effectiveness and stability,and could effectively improve the control accuracy and robustness of the rudder angle during ship navigation.

real-time feedbackreinforcement learningneural networkship yaw

宋伟伟、徐跃宾、段学静、巩方超、崔英明

展开 >

山东省船舶控制工程和智能系统工程技术研究中心,山东威海 264300

威海海洋职业学院,山东威海 264300

实时反馈 强化学习 神经网络 船舶艏摇

山东省船舶控制工程与智能系统工程技术研究中心科研专项

SSCC-2021-0006

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(8)
  • 6