首页|基于贝叶斯分层模型的低复杂度无线传感器网络定位算法

基于贝叶斯分层模型的低复杂度无线传感器网络定位算法

扫码查看
文章对基于压缩感知的无线传感器网络定位算法进行了研究,存在重构算法计算量大、定位误差较大等问题,为降低计算复杂度和定位误差,文章提出基于贝叶斯分层模型的低复杂度无线传感器网络定位算法。首先,将稀疏贝叶斯分层先验模型引入到无线传感器网络的定位中;其次,通过运用稀疏贝叶斯理论推理出估计目标的后验概率分布;最后,结合变分消息传递(VMP)算法,使用辅助函数对未知变量的联合后验概率密度函数进行等效,得到目标位置向量的估计结果。仿真结果表明,相较于传统的重构算法,文章提出的方法具有更好的恢复效果,计算复杂度更低。
Low-complexity Wireless Sensor Network Location Algorithm Based on Bayesian Hierarchical Model
In this paper,the algorithm of wireless sensor network location based on compression perception is studied,and there are some problems such as large computation of reconstruction algorithm and large positioning error.In order to reduce the computational complexity and localization error,a low complexity wireless sensor network localization algorithm based on Bayesian Hierarchical Model is proposed.Firstly,the sparse Bayesian hierarchical priori model is introduced into the positioning of wireless sensor networks.Secondly,by using sparse Bayesian theory,the transcendental probability distribution of estimated target is deduced.Finally,combined with Variational Message Passing(VMP)algorithm,the joint posterior probability density function of unknown variables is equivalent by auxiliary function,and the target location vector is estimated.The simulation results show that the proposed method in this paper has better recovery effect and lower computational complexity than traditional reconstruction algorithm.

compressive sensingBayesian Hierarchical Modellow complexityreconfiguration algorithm

翟永祺

展开 >

福建理工大学 计算机科学与数学学院,福建 福州 350118

压缩感知 贝叶斯分层模型 低复杂度 重构算法

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(8)
  • 9