首页|基于XGBoost和SHAP方法的个人信贷风险评估研究

基于XGBoost和SHAP方法的个人信贷风险评估研究

扫码查看
为实现全面准确地评估个人信贷风险,首先,研究了借贷人的各项个人信息指标在信用风险评估中的重要性;接着,基于Python编程语言采用XGBoost集成学习方法搭建了一套个人贷款信用评估模型;随后,结合SHAP方法筛选出合理的信用评估指标,完善了评估模型;最后,基于LabVIEW平台开发个人贷款信用评估系统。研究结果表明:最终筛选的指标能更有效地评估个人信贷风险,可以为金融行业提供一个更有效的个人信贷风险评估系统。
Research on the Personal Credit Risk Assessment Based on XGBoost and SHAP Methods
To achieve a comprehensive and accurate assessment of personal credit risk,firstly,the importance of various personal information indicators of borrowers in credit risk assessment is studied.Next,based on Python programming language and XGBoost integrated learning method,a personal loan credit assessment model is constructed.Subsequently,reasonable credit assessment indicators are selected by using the SHAP method to improve the assessment model.Finally,it develops a personal loan credit evaluation system based on the LabVIEW platform.The research results indicate that the final selected indicators can more effectively evaluate personal credit risk,and can provide a more effective personal credit risk assessment system for the financial industry.

credit riskXGBoost algorithmSHAPcredit evaluationPython

伍洁、陈迪芳、李瑞彤、石景阳

展开 >

湖北汽车工业学院 数理与光电工程学院,湖北 十堰 442002

信贷风险 XGBoost算法 SHAP 信用评估 Python

湖北省大学生创新创业训练计划教育部产学合作协同育人项目湖北省大学生创新创业训练计划

S202210525055202101087049S202210525056

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(8)
  • 10