首页|基于E-ARLL算法的养老助餐服务数据异常检测方法

基于E-ARLL算法的养老助餐服务数据异常检测方法

扫码查看
我国正在步入人口老龄化社会,政府为保障老人的每日三餐,在各地购买养老助餐服务,服务过程中出现虚假服务、盗用冒用等问题,威胁到政府和老人的财产安全,故提出E-ARLL算法对数据异常进行检测。该方法使用Pearson相关系数和ANOVA(方差分析)对原始数据集进行划分特征训练集和特征验证集,然后,将特征训练集输入到E-ARLL算法模型中,基于集成学习(Ensemble Method)思路,根据划分好数据集的线性关系选择适合的算法进行异常检测。实验结果表明,提出的方法对养老助餐服务数据异常检测表现出良好的性能,最终异常数据识别率为 99。4%,为政府购买服务的可信性带来了新的验证方法,具有深远的意义。
Abnormal Detection Method of Pension Meal Service Data Based on E-ARLL Algorithm
China is entering an aging society.In order to ensure the three meals a day for the elderly,the government purchases pension meal services in various places.The false services,embezzlement,falsely use and other problems in the service process threaten the property security of government and the elderly,so this paper proposes E-ARLL algorithm to detect abnormal data.This method uses Pearson correlation coefficient and ANOVA to divide the original dataset into the feature training set and the feature verification set,and then the feature training set is input into the E-ARLL algorithm model.Based on the thinking of Ensemble Method,the suitable algorithm is selected for abnormal detection according to the linear relationship of the divided dataset.The experimental results show that the proposed method shows good performance on the abnormal detection of pension meal service data,and the final abnormal data identification rate is 99.4%.It brings new verification methods to the credibility of government purchasing services,which has profound significance.

abnormal detectionintegrated algorithmpension service

胡俊杰、黄猛

展开 >

安徽理工大学计算机科学与工程学院,安徽 淮南 232001

异常检测 集成算法 养老服务

滁州学院校级重点科研项目安徽省高等学校自然科学研究重大项目

2022XJZD092022AH040149

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(8)
  • 11