首页|基于双流融合网络的恶意软件动态行为检测

基于双流融合网络的恶意软件动态行为检测

扫码查看
针对传统静态分析方法很难捕捉到恶意软件复杂多变的动态行为问题,实验基于动态特征分析技术,通过研究八种常见恶意软件的WindowsAPI调用序列,发现了API调用序列的前后顺序和调用频率会直接反映恶意软件的恶意行为,实验使用TF-IDF技术将API调用序列向量化,设计基于CNN-BiLSTM双流融合网络的深度学习模型对这种API调用的前后依赖关系进行建模,实现对常见恶意软件的动态检测。实验结果表明,该模型的测试准确率达到了95。99%,优于RF、SVM、LSTM、BiLSTM和CNN-LSTM模型,为恶意软件的检测提供了借鉴参考。
Dynamic Behavior Detection for Malware Based on Dual-stream Converged Networks
To address the problem that traditional static analysis methods are difficult to capture the complex and changeable dynamic behavior of malware,the experiment is based on dynamic feature analysis techniques,through studying the WindowsAPI call sequences of eight common malware,it is found that the before-and-after order of API call sequences and the call frequency will directly reflect the malicious behavior of malware.The experiment uses TF-IDF(Term Frequency-Inverse Document Frequency)technique to vectorize the API call sequences,and designs a Deep Learning model based on CNN-BiLSTM dual-stream converged network to model the before-and-after dependency relationship of such API calls and realize the dynamic detection of common malware.The experimental results indicate that the test accuracy of this model reaches 95.99%,which is better than RF,SVM,LSTM,BiLSTM and CNN-LSTM models,and provides reference for malware detection.

API call sequencedynamic detectionDeep Learningfeature representation

王玉胜、毛子恒

展开 >

辽宁工业大学电子与信息工程学院,辽宁 锦州 121001

API调用序列 动态检测 深度学习 特征表示

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(8)
  • 17