首页|基于贝叶斯优化-XGBoost的电商用户流失预测模型

基于贝叶斯优化-XGBoost的电商用户流失预测模型

扫码查看
针对电商公司发展过程中存在的电商用户流失预测问题,提出一种结合极限梯度提升回归树(XGBoost)、贝叶斯优化方法(BO)的电商用户流失预测模型BO-XGBoost。通过将模型与常用的随机搜索、网格搜索方法优化的XGBoost模型进行对比,验证了所提模型的F1 分数更高,效率更好。为进一步评价预测模型,将BO-XGBoost模型与BO-LR、BO-SVM、BO-RF、未优化前的XGBoost模型进行对比,结果表明BO-XGBoost模型在准确率、精确率、召回率和F1 分数上均表现最佳,同时在电商流失预测领域更看重的查全率达到了 95。26%,大幅领先其他模型,表明BO-XGBoost模型在电商用户流失预测方面取得了较好的效果。
E-commerce Customer Churn Prediction Model Based on Bayesian Optimization-XGBoost
In response to the problem of predicting E-commerce customer churn faced by E-commerce companies during their development process,an E-commerce customer churn prediction model BO-XGBoost is proposed,which combines Extreme Gradient Enhancement Regression Tree(XGBoost)and Bayesian Optimization method(BO).By comparing the model with the XGBoost model optimized by commonly used random search and grid search methods,it is verified that the proposed model has a higher F1 score and better efficiency.To further evaluate the prediction model,the BO-XGBoost model is compared with BO-LR,BO-SVM,BO-RF,and the unoptimized XGBoost model.The results show that the BO-XGBoost model perform the best in accuracy,accuracy,recall,and F1 score.At the same time,the recall rate,which is more important in the field of E-commerce customer churn prediction,reaches 95.26%,significantly leading other models,which indicates that the BO-XGBoost model has achieved good results in predicting E-commerce customer churn.

customer churn predictionBayesian OptimizationGaussian processXGBoostMachine Learning

李宏明、庄伟卿

展开 >

福建理工大学 互联网经贸学院,福建 福州 350014

用户流失预测 贝叶斯优化 高斯过程 XGBoost 机器学习

福建省科协科技创新智库课题研究项目

FJKX-2022XKB023

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(9)
  • 13