首页|基于ARIMA模型对定西天气数据的分析与预测

基于ARIMA模型对定西天气数据的分析与预测

扫码查看
由于天气对农业生产、水资源管理和自然灾害预防等具有重要影响,文章采用ARIMA模型来实现对天气的有效预测.通过利用ACF和PACF图粗略确定ARIMA模型的参数,最终确定最优模型:ARIMA(1,1,1)为日最低气温模型,其残差序列自相关函数与偏自相关函数基本落在 95%置信区间内;同时Ljung-Box Q统计结果表明残差不存在相关关系(P>0.05),即残差为白噪声,满足随机性假设;最终计算误差(日最低气温)RMSE、MAPE、MAE分别为2.63、1.22%、2.06,预测结果良好,为定西天气的预测提供了可行的方案.
Analysis and Prediction of Dingxi Weather Data Based on ARIMA Model
Due to the significant impact of weather on agricultural production,water resource management,and natural disaster prevention,it adopts the ARIMA model to achieve effective weather prediction.By using ACF and PACF diagrams to roughly determine the parameters of the ARIMA model,the optimal model is ultimately determined.ARIMA(1,1,1)is the daily minimum temperature model,with the residual sequence autocorrelation function and partial autocorrelation function basically falling within the 95%confidence interval.At the same time,the statistical results of Ljung-Box Q indicate that there is no correlation between residuals(P>0.05),indicating that residuals are white noise and satisfy the assumption of randomness.The final calculation errors(daily minimum temperature)RMSE,MAPE,and MAE are 2.63,1.22%,and 2.06,respectively.The prediction results are good,providing a feasible solution for predicting the weather in Dingxi.

weather forecastingtime series interpolation methodARIMA model

赵子鹏、魏新奇、唐龙、高丙翻、康亮河

展开 >

甘肃农业大学,甘肃 兰州 730070

天气预测 时间序列插值法 ARIMA模型

甘肃农业大学大学生创新创业训练计划

202316008

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(9)
  • 10