首页|基于COPSO-GRNN的土壤重金属含量预测模型

基于COPSO-GRNN的土壤重金属含量预测模型

扫码查看
土壤重金属含量预测是土壤污染治理的重要一环,为提高预测准确性,文章提出一种基于COPSO-GRNN的土壤重金属含量预测模型。该模型针对广义回归神经网络(GRNN)的平滑因子难以确定的问题,使用余弦优化粒子群算法(COPSO)对其进行优化,优化过程中除了为种群个体增加小种群比较策略之外还采用了余弦加速系数来扩大搜索范围并避免陷入局部最优,之后引入适应准则来提高算法收敛速度。对该模型与几种常见的土壤重金属含量预测模型进行对比实验,实验结果表明该模型的预测值更接近于真实值,具有更好的预测性能。
Prediction Model for Soil Heavy Metal Content Based on COPSO-GRNN
The prediction of soil heavy metal content is an important part of soil pollution control.To improve the accuracy of prediction,this paper proposes a prediction model for soil heavy metal content based on COPSO-GRNN.In response to the problem that it has difficulty in determining the smoothing factor of generalized regression neural networks(GRNN),the model uses cosine optimization particle swarm optimization(COPSO)for optimization.In addition to adding a small population comparison strategy to the population,it also uses cosine acceleration coefficient to expand the search range and avoid falling into local optima during the optimization process.Then,an adaptation criterion is introduced to improve the convergence speed of the algorithm.Comparative experiments are conducted between this model and several common prediction models for soil heavy metal content.The experimental results show that the predicted values of this model are closer to the true values and has better predictive performance.

the prediction of soil heavy metal contentGRNNCOPSOparameter optimization

曹文琪

展开 >

武昌工学院 信息工程学院,湖北 武汉 430065

土壤重金属含量预测 广义回归神经网络 余弦优化粒子群算法 参数优化

武昌工学院校级科研一般项目

2023KY11

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(9)
  • 10