首页|基于YOLOv5改进的小目标检测算法研究

基于YOLOv5改进的小目标检测算法研究

扫码查看
为解决无人机捕获场景中小目标检测存在的检测精度不高和漏检问题,提出基于YOLOv5改进的小目标检测算法DE_YOLOv5.DE_YOLOv5 的数据集采用VisDrone2019.实验包括两个方面,一是引入解耦合头机制,通过独立的中心点预测减小感受野限制对小目标定位的影响,初始模型的mAP@0.5为0.334,加入解耦合头之后mAP@0.5值为0.344.二是将损失函数更换为Focal-EIoU,更换损失函数之后mAP@0.5 值为 0.351.实验结果表明,DE_YOLOv5 可有效提升小目标的检测精度.
Research on Improved Small Target Detection Algorithm Based on YOLOv5
To solve the problems of low accuracy and missed detection of small targets in scenarios by UAV,an improved small target detection algorithm DE_YOLOv5 based on YOLOv5 is proposed.The dataset of DE_YOLOv5 adopts VisDrone2019.The experiment includes two aspects.One is to introduce a decoupling joint mechanism,which reduces the impact of receptive field limitations on small target localization through independent center point prediction.mAP@0.5 of the initial model is 0.334,mAP@0.5 value is 0.344 after adding decoupling joint.The second is to replace the loss function with Focal-EIoU,and mAP@0.5 value is 0.351 after replacing the loss function.The experimental results show that DE_YOLOv5 can effectively improve the detection accuracy of small targets.

small goaldecoupling jointimage recognition

朱梦琳、尹泉贺、原素慧

展开 >

华北水利水电大学 信息工程学院,河南 郑州 450046

小目标 解耦合头 图像识别

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(10)