首页|基于BERT的用户评论情感分析

基于BERT的用户评论情感分析

扫码查看
情感分析(SA)是互联网时代非常重要的自然语言处理(NLP)子任务,可以帮助使用者进行评论分析、舆情分析等.然而,现有大多数研究都致力于提升情感分析任务的整体表现,很少有针对不同文本特征的分类研究.分类研究可以帮助研究者找到当前分析方法在特定场景中的短板,也可以指导使用者在面对不同场景时选择更合适的分析方法.文章基于BERT模型,按照文本长度和评价目标个数对SentiHood进行分类,使用不同的分析方法进行分组实验.实验结果表明,各个方法在短文本分析中的表现优于长文本分析中的表现,单目标分析的表现优于多目标分析.在不同的文本特征下,分别有不同的分析方法体现出最优性能.
Sentiment Analysis of User Comments Based on BERT
Sentiment Analysis(SA)is a very important sub-task of Natural Language Processing(NLP)in the Internet era,which can help users to analyze comments and public opinion.However,most existing studies focus on improving the overall performance of sentiment analysis tasks,and there are few categorical studies targeting different text features.Classification research can help researchers find the shortcomings of current analysis methods in specific scenarios,and can also guide users to choose more appropriate analysis methods when facing different scenarios.Based on the BERT model,SentiHood is classified according to text length and number of evaluation targets,and different analysis methods are used to conduct group experiments.The experimental results show that each method performs better in short text analysis than in long text analysis,and the performance of single objective analysis is better than that of multi-objective analysis.Under different text features,there are different analysis methods that demonstrate optimal performance.

SAtext featureBERT

漆阳帆

展开 >

吉林大学,吉林 长春 130012

情感分析 文本特征 BERT

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(10)