首页|基于深度学习的MRI图像重建研究综述

基于深度学习的MRI图像重建研究综述

扫码查看
磁共振成像技术具有高分辨率、无辐射性、能够获取多参数信息等优点,已经广泛应用于临床诊断与治疗。但MRI主要的缺点就是成像速度慢,这限制了其进一步的发展。文章研究了传统的MRI重建方法,对基于深度学习的有监督和无监督MRI重建方法进行了总结和归纳,并对网络结果进行了分析和可视化展示。最后探讨了未来实现MRI图像重建的研究难点。
Research Review of MRI Image Reconstruction Based on Deep Learning
Magnetic Resonance Imaging technology has been widely used in clinical diagnosis and treatments,due to its advantages of high resolution,non-radiation,and the ability to acquire multi-parameter information.However,the main drawback of MRI is the slow imaging speed,which limits its further development.This paper studies the traditional MRI reconstruction methods,summarizes and categorizes supervised and unsupervised MRI reconstruction methods based on Deep Learning,and analyzes and displays the visualization of the network results.Finally it discusses the future research difficulties to achieve MRI image reconstruction.

MRIDeep Learningimage reconstructionphysical modelend-to-end

朱俊琳、李思怡、黄敏

展开 >

中南民族大学,湖北 武汉 430074

磁共振成像 深度学习 图像重建 物理模型 端到端

中央高校基本科研业务费专项

CZZ21006

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(11)
  • 26