首页|实验教学课堂学生表情检测系统设计与实现

实验教学课堂学生表情检测系统设计与实现

扫码查看
针对实验教学课堂学生学习效果难以监测等问题,将SE注意力机制和改进的空间金字塔池化引入YOLOv5,设计了一款基于实验室低画质视频的学生表情检测系统,实现了对实验课堂中学生面部表情的高精度识别。实验结果表明,添加SE注意力机制模块后,模型识别精度达到 89%;再添加改进的金字塔池化后,模型识别精度达到94%。系统将深度学习技术与实验室课堂教学质量评估实践相结合,创新了实验教学课堂质量评价模式,可以为教师调整实验课堂教学模式提供参考依据。
Design and Implementation of a Student Expression Detection System in Experimental Teaching Classroom
In response to the difficulty in monitoring the learning effectiveness of students in experimental teaching classrooms,the SE Attention Mechanism and improved spatial pyramid pooling are introduced into YOLOv5.A student expression detection system based on low-quality laboratory videos is designed,achieving high-precision recognition of facial expressions of students in experimental classrooms.The experimental results show that after adding the SE Attention Mechanism module,the recognition accuracy of the model reaches 89%.After adding improved pyramid pooling,the model recognition accuracy reaches 94%.The system combines Deep Learning technology with laboratory classroom teaching quality evaluation practice,innovates the experimental teaching classroom quality evaluation mode,and can provide reference basis for teachers to adjust the experimental classroom teaching mode.

low-quality videoexpression detectionYOLOv5Attention Mechanismspatial pyramid pooling

吴斌

展开 >

浙江农林大学 数学与计算机科学学院,浙江 杭州 311300

低画质视频 表情检测 YOLOv5 注意力机制 空间金字塔池化

浙江省教育厅科研项目浙江农林大学科研发展基金

Y2022500932023LFR147

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(11)
  • 29