首页|基于时间序列的发电机设备异常分析

基于时间序列的发电机设备异常分析

扫码查看
为提高发电机组设备运行维护管理水平,提出一种基于PCA-Informer方法的发电设备故障预测技术。首先使用主成分分析(PCA)算法降低时间序列数据的特征维度;其次将数据分批次输入Encoder中,由Encoder执行蒸馏操作,提取长时间序列输入间的Long-Range依赖,通过蒸馏操作为重要特征赋予更高的权重,并在下一层生成聚焦的Self-Attention Feature Map;最后由Decoder通过一个正向过程一步生成长序列输出。通过实验验证,该方法能够有效地对发电设备的故障进行预测。
Abnormal Analysis of Generator Equipment Based on Time Series
To improve the level of maintenance and management of power generation equipment operation,a fault prediction technology for power generation equipment based on PCA-Informer method is proposed.Firstly,it uses Principal Component Analysis(PCA)algorithm to reduce the feature dimension of time series data.Secondly,the data is inputted into the Encoder in batches,and the Encoder performs distillation operations to extract Long-Range dependencies between long time series inputs.The important features are given higher weights through distillation operation,and a focused Self-Attention Feature Map is generated in the next layer.Finally,the Decoder generates a long sequence output by one-step reaction through a forward process.Experimental results show this method can effectively predict the faults of power generation equipment.

generator equipmentPCAInformerfault prediction

陆钊、龙法宁、陈国年

展开 >

玉林师范学院,广西 玉林 537000

发电机设备 主成分分析 Informer 故障预测

玉林市科学研究与开发计划

玉市科20202925

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(12)
  • 10