首页|预训练大模型在油气领域的价值场景、挑战及未来方向

预训练大模型在油气领域的价值场景、挑战及未来方向

扫码查看
对机器学习、深度学习、知识工程等为代表的判别式人工智能和以GPT、Sora等为代表的生成式人工智能的特点、技术现状和应用能力边界进行了研究,系统地比较了判别式人工智能与生成式人工智能的背景、技术原理、技术特点,分析了当前AIGC的技术现状、瓶颈,总结了生成式人工智能(AIGC)进一步推动AI赛道进入快速发展期的原因,并对未来一段时间内,AIGC在油气工业领域的应用趋势、难点进行了分析预测。
Value Scenarios and Challenges and Future Directions of Pre-trained AI Big Model in the Oil and Gas Field
This paper researches the characteristics,current technological status,and application capability boundaries of Discriminative Artificial Intelligence represented by Machine Learning,Deep Learning,and Knowledge Engineering,as well as AIGC represented by GPT and Sora.It systematically compares the backgrounds,technological principles,and technological characteristics of Discriminative Artificial Intelligence and AIGC,analyzes the current technological status and bottlenecks of AIGC,and summarizes the reasons for Artificial Intelligence Generated Content(AIGC)to further promote the rapid development of the AI industry.Furthermore,it analyzes and predicts the application trends and difficulties of AIGC in the oil and gas industry in the near future.

AIGCoil and gas depthpotential application need

陈宏志、宫本儒、王笑妍、林秀峰、孙加峰

展开 >

中石油集团昆仑数智科技有限责任公司研究院,北京 102206

中国人民大学 信息学院,北京 100872

中国移动通信集团内蒙古有限公司,内蒙古 呼和浩特 010000

生成式人工智能 油气纵深 潜在应用需求

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(13)