首页|基于层内和层间融合注意力的家族恶意域名检测

基于层内和层间融合注意力的家族恶意域名检测

扫码查看
针对当前家族恶意域名检测方法在新出现或新变种恶意域名的检测方面仍存在精度低、漏报高等问题,提出一种基于层内和层间融合注意力的家族恶意域名检测的新方法。首先,利用深度自编码网络将域名集逐层编码压缩到空间特征中,并借助自注意力机制强化域名字符串中关键字符的表达能力;其次,利用交叉注意力建立双分支网络输入端的关联,促进分支间深层信息的交流;最后,计算待测域名映射特征与交互特征集之间的相似度对比。实验证明所设计方法的准确率为98。21%,该方法对保障网络安全、预防新型域名入侵攻击具有重要的现实意义。
Family Malicious Domain Name Detection Based on Intra-layer and Inter-layer Fusion Attention
A new method for detecting family malicious domain names based on intra-layer and inter-layer fusion attention is proposed to address the issues of low accuracy and high false positives in the detection of newly emerged or mutated malicious domain names using current methods.Firstly,it uses deep self-encoded networks to compress the domain name set layer by layer into spatial features,and utilizes self-attention mechanisms to enhance the expression ability of key characters in domain name strings.Secondly,it utilizes cross attention to establish associations between the input ends of a dual branch network,promoting the exchange of deep information between branches.Finally,it calculates the similarity comparison between the mapping features of domain name to be tested and the interaction feature set.The experimental results show that the accuracy of the designed method is 98.21%,which is of great practical significance for ensuring network security and preventing new domain name intrusion attacks.

malicious domain name detectionfusion attentionjudgment ruleintra-layer self-attentioninter-layer cross-attention

张清

展开 >

兰州石化职业技术大学,甘肃 兰州 730060

恶意域名检测 融合注意力 判定规则 层内自注意力 层间交叉注意力

兰州石化职业技术大学科学研究项目

2023KY-14

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(14)