首页|基于改进粒子群聚类算法的出行热点提取方法

基于改进粒子群聚类算法的出行热点提取方法

扫码查看
提出一种基于改进粒子群算法的聚类算法来实现城市出行热点挖掘。首先对轨迹数据进行清洗、标准化、分割等预处理;其次采用改进粒子群的聚类算法分析热点区域;最后以这些热点作为网络节点,以道路作为连接边建立网络模型,从节点和连接边出发,实现出行热点可视化。算法的全局寻优能力和分布式随机搜索特性能够解决传统聚类算法易陷入局部最优的问题,算法引入了压缩因子,能通过配置最优参数控制粒子群更新速度,从而有效改进粒子群算法准确率和全局收敛性。
Method of Extracting Travel Hotspots Based on Improved Particle Swarm Optimization Cluster Algorithm
This paper proposes a clustering algorithm based on improved Particle Swarm Optimization to achieve urban travel hotspot mining.Firstly,it preprocesses the trajectory data through cleaning,standardization,and segmentation.Then,an improved Particle Swarm Optimization clustering algorithm is used to analyze the hotspot area.Finally,it takes the hotspots as network nodes and takes the roads as connecting edges to establish network model.Starting from the nodes and connecting edges,it achieves visualization of travel hotspots.The global optimization ability and distributed random search characteristics of the algorithm can solve the problem of traditional clustering algorithms easily falling into local optima.The algorithm introduces a compression factor and can control the update speed of the particle swarm by configuring the optimal parameters,so as to effectively improve the accuracy and global convergence of the Particle Swarm Optimization algorithm.

trajectory datacompressibility factorimproved Particle Swarm Optimization algorithmcluster algorithmhotspot mining

陈瑛、吴明珠

展开 >

广州工程技术职业学院 信息工程学院,广东 广州 510075

轨迹数据 压缩因子 改进粒子群算法 聚类算法 热点挖掘

广东省高校科研平台和项目重点领域专项(2022)广东省教育科学规划课题(2022)广东省高职院校课程思政示范课程项目(2023)广州市教学成果培育项目(2023)

2022ZDZX10672022GXJK552KCSZ041682023128737

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(15)