首页|多模型融合投票预标注算法研究

多模型融合投票预标注算法研究

扫码查看
针对标注内容烦琐、耗时等问题,提出一种多模型融合投票预标注方法。在预标注过程中,将Cascade_RCNN、RetinaNet、CondLaneNet三个模型的检测结果进行融合,然后将各个模型生成的坐标结果进行提取、判断、匹配、参数平均、排序等处理,得到最终的预标注结果。在公开数据集以及自建数据集上进行多次试验的结果表明,算法能够提高预标注精度,减少标注过程中人工标注工作量,具有较好的效果,验证了该方法的有效性。
Research on Pre-labelling Algorithm for Multi-model Fusion Voting
Aiming at the two problems of cumbersome and time-consuming annotation content,a pre-labelling algorithm for multi-model fusion voting is proposed.In the pre-labelling process,the detection results of the three models of Cascade_RCNN,RetinaNet and CondLaneNet are fused,and then the coordinate results generated by each model are processed by extracting,judging,matching,averaging of parameters,sorting and so on,to obtain the final pre-labelling results.The results of multiple tests on the public datasets and the self-constructed datasets show that the algorithm is able to improve the accuracy of pre-labelling and reduce the manual labelling workload in the process of labelling,which has a better effect and verifies the effectiveness of the method.

Deep Learningtarget detectionlaneline detectionpre-labellingmodel fusion

吉星、陈喆、陈飞扬、杨文听、樊桢珍、许丹

展开 >

陕西重型汽车有限公司,陕西 西安 710000

深度学习 目标检测 车道线检测 预标注 模型融合

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(16)