首页|基于改进PSPNet的森林火烧迹地检测

基于改进PSPNet的森林火烧迹地检测

扫码查看
为提高对森林火烧迹地的检测精度,文章利用火灾后Sentinel-2 卫星影像,提出一种基于改进PSPNet的森林火烧迹地检测模型.该模型以带空洞卷积的ResNet34 作为主干网络,并在主干网络内部融合RFB(Receptive Field Block)模块和ULSAM(Ultra Lightweight Subspace Attention Module)模块来增强其特征提取能力;最后利用跳跃连接使模型的解码器部分充分利用主干网络输出的四个层级特征图.实验结果表明改进PSPNet模型的平均交并比和总体准确率分别为 91.86%和 96.89%,相比PSPNet,分别提高 1.52%和 0.67%.与其他语义分割模型相比,改进模型得到的分割结果细节更加丰富,且具有较好的泛化性能.
Forest Burned Area Detection Based on Improved PSPNet
In order to improve the detection accuracy of forest burned area,this paper uses Sentinel-2 satellite images after the fire to propose a forest burned area detection model based on improved PSPNet.This model employs ResNet34 with dilated convolution as the backbone network and fuses the RFB module and ULSAM module inside the backbone network to enhance its feature extraction capability.Finally,skip connection is used to make the decoder part of the model make full use of the four-level feature maps output by the backbone network.The experimental results show that the MIoU and overall accuracy of the improved PSPNet model is 91.86%and 96.89%,respectively,which is 1.52%and 0.67%higher than PSPNet.Compared with other semantic segmentation models,segmentation outcomes achieved by the improved model exhibit richer details and have better generalization performance.

forest fireburned areamultispectral satellite imageDeep Learningsemantic segmentation

张艺、马永军、王广来、黄建平

展开 >

东北林业大学 计算机与控制工程学院,黑龙江 哈尔滨 150040

森林火灾 火烧迹地 多光谱卫星影像 深度学习 语义分割

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(17)