首页|基于情感分析的TCN-LSTM的股价预测

基于情感分析的TCN-LSTM的股价预测

扫码查看
针对传统股价预测模型未考虑市场投资者情绪对股票价格的影响以及难以较好的处理股价预测任务的问题,提出融合情感特征的时序深度学习模型BERT-TCN-LSTM.首先,对从股吧爬取投资者的评论信息进行情绪分析,提取出每日情绪的平均值作为模型的输入;其次,将每日情感均值与股票价格数据、技术指标输入构建的TCN-LSTM模型中进行训练;最后,在沪深300以及四只个股股票数据的数据集上进行实验.结果表明,相较于时间卷积网络(TCN)、LSTM和CNN-LSTM,BERT-TCN-LSTM在沪深 300 数据集上的平均绝对误差(MAE)平均降低了 54%.BERT-TCN-LSTM模型可以有效提升股票价格预测的精度.
TCN-LSTM Stock Price Prediction Based on Sentiment Analysis
In view of the fact that traditional stock price prediction models do not consider the impact of market investor sentiment on stock prices and are difficult to handle stock price prediction tasks,a time series Deep Learning model BERT-TCN-LSTM that integrates sentiment features is proposed.Firstly,sentiment analysis is performed on investor comments crawled from stock bars,and the average value of daily sentiment is extracted as the input of the model.Secondly,the TCN-LSTM model constructed by the daily sentiment average and stock price data and technical indicators is trained.Finally,experiments are conducted on the data sets of CSI 300 and four individual stock data.The results show that compared with the Temporal Convolutional Network(TCN),LSTM and CNN-LSTM,the Mean Absolute Error(MAE)of BERT-TCN-LSTM on the CSI 300 data set is reduced by an average of 54%.The BERT-TCN-LSTM model can effectively improve the accuracy of stock price prediction.

time series predictionsentiment analysisTemporal Convolutional NetworksLong Short-Term Memory

张庭溢、黄礼钦、陈香香

展开 >

福建理工大学 管理学院,福建 福州 350118

福建理工大学 互联网经贸学院,福建 福州 350011

时间序列预测 情绪分析 时间卷积网络 长短期记忆网络

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(17)