首页|基于YOLOv8的目标检测算法改进研究

基于YOLOv8的目标检测算法改进研究

扫码查看
现有的目标检测网络往往存在结构复杂、参数量巨大的问题.因此,研究结构简单、参数量少的高精度目标检测算法,其重要性和价值不言而喻.YOLO系列算法作为深度学习时代具有代表性的单阶段目标检测算法,具有准确、高效和易于部署等特点,为目标检测提供了非常好的理论及技术基础.因此,文章在YOLOv8 的基础上对其卷积网络进行改进,实验结果证明,改进算法成功提升了检测精度.
Research on the Improvement of Target Detection Algorithm Based on YOLOv8
The existing target detection network often has the problems of complex structure and huge parameters.Therefore,it is difficult to study the high-precision target detection algorithm with simple structure and a few parameters.As a representative single-stage target detection algorithm in the era of Deep Learning,YOLO series algorithms have the characteristics of accuracy,high efficiency and easy deployment,which provides a very good theoretical and technical basis for target detection.Therefore,this paper improves its convolutional network based on YOLOv8 and successfully improves the detection accuracy.

target detectionhigh accuracyYOLOv8convolutional network

肖富坤

展开 >

沈阳航空航天大学,辽宁 沈阳 110136

目标检测 高精度 YOLOv8 卷积网络

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(18)