首页|基于数据挖掘的提高汽车座舱推送类产品触发成功率的研究

基于数据挖掘的提高汽车座舱推送类产品触发成功率的研究

扫码查看
随着汽车行业向智能化和网联化转型,智能座舱体验已成为中高端车型的核心竞争力.传统的推送功能研发方法受限于人工配置的随意性,导致触发成功率低、触达精准性差等问题,为了解决这些问题,提出了一种基于车联网数据的智能座舱场景推送模型.该模型通过深入分析功能数据特征,运用监督学习技术训练多个算法,采用半监督学习方法克服数据标签不足的挑战,利用终端数据埋点技术,对模型进行精细优化,以提高推送的准确性和效率.实验结果表明,与传统方法相比,该模型在触发成功率和触达精准性上取得了显著提升.这一成果不仅为智能座舱技术的发展提供了有力支持,也为用户带来了更加个性化、高品质的座舱体验.
Research on Improving the Trigger Success Rate of Automobile Cockpit Push Products Based on Data Mining
With the transformation of the automotive industry to intelligence and networking,the intelligent cockpit experience has become the core competitiveness of middle and high-end models.The traditional push function development method is limited by the randomness of manual configuration,resulting in low trigger success rate and poor touch accuracy.In order to solve these problems,an intelligent cockpit scene push model based on Internet of Vehicles data is proposed.Through in-depth analysis of the characteristics of functional data,the model uses Supervised Learning technology to train multiple algorithms,uses Semi-Supervised Learning method to overcome the challenge of insufficient data labels,and uses terminal data event tracking technology to finely optimize the model to improve the accuracy and efficiency of push.The experimental results show that compared with the traditional method,the model has achieved significant improvement in trigger success rate and touch accuracy.This achievement not only provides strong support for the development of intelligent cockpit technology but also brings more personalized and high-quality cockpit experience to users.

data miningInternet of Vehiclesvehicle intelligent cockpitsingle Decision Treegradient boosting Decision TreeRandom ForestSemi-Supervised Learningdata event tracking

容达、张立安、陈喜源

展开 >

广东白云学院 大数据与计算机学院,广东 广州 510450

广东科贸职业学院 物联网技术应用教研室,广东 广州 510651

润生软件开发(广东)有限公司,广东 广州 511457

数据挖掘 车联网 车载智能座舱 单一决策树 梯度提升决策树 随机森林 半监督学习 数据埋点

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(18)