首页|基于SSD算法的人脸检测算法研究

基于SSD算法的人脸检测算法研究

扫码查看
针对传统SSD算法中对小目标检测效果不好的问题,提出一种基于ResNet的人脸检测算法。将SSD算法的基础网络VGG改进为ResNet网络,并通过残差网络,采用特征融合的方式将不同深度的特征信息进行融合,从而提高算法对小尺度人脸的检测性能。同时,针对SSD算法对重叠框出现漏检的问题,将非极大值抑制算法(NMS)改进为Soft-NMS。此外,通过设置一个衰减函数,来降低相邻检测框的置信度,解决传统NMS算法对分数较低的检测框过滤掉的问题,能够降低算法的漏检率,提升算法的检测精度。
Research on Face Detection Algorithm Based on SSD Algorithm
Aiming at the problem of poor small target detection effect in the traditional SSD algorithm,a face detection algorithm based on ResNet is proposed.This paper improves the basic network VGG of the SSD algorithm to the ResNet network,and uses the method of characteristic integration to integrate the characteristic information of different depth through the residual network,thereby improving the detection performance of the small-scale face.At the same time,aiming at the problem of leak detection in the overlapping frame for the SSD algorithm,the Non-Maximum Suppression(NMS)is improved to Soft-NMS.In addition,by setting up an attenuation function,it reduces the confidence of the adjacent detection box,and solves the problem of filtering the traditional NMS algorithm on the detection box with lower scores,which could reduce the leakage rate of the algorithm and improve the detection accuracy of the algorithm.

face detectionSingle Shot MultiBox Detector algorithmResNetSoft-NMS

郑文秀、赵兴娜

展开 >

山东华宇工学院,山东 德州 253034

人脸检测 SSD算法 ResNet Soft-NMS

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(19)