首页|基于逻辑回归模型的信用卡逾期风险预测及优化

基于逻辑回归模型的信用卡逾期风险预测及优化

扫码查看
信用卡逾期风险预测对金融机构的风险管理至关重要。文章基于8 731个信用卡用户的逾期行为数据,分析了 7 个关键申请人特征,并采用逻辑回归模型对逾期风险进行了精准预测。针对数据不平衡及预测可信度问题,采用独热编码技术处理类别数据,并通过样本平衡化技术加以解决。在模型调优方面,综合考虑模型的拟合优度和复杂度,精细调整模型参数,显著提升了预测的可靠性。相较于AIC模型 75。494%的精度,优化后的逻辑回归模型展现出更出色的预测性能。此外,还利用ROC曲线对模型性能进行了全面评估。实验结果表明,优化后的逻辑回归模型在信用卡逾期风险预测方面表现优异,为金融机构的风险管理和决策提供了有力支持。
Credit Card Overdue Risk Prediction and Optimization Based on Logistic Regression Model
Credit card overdue risk prediction is crucial for risk management of financial institutions.Based on the overdue behavior data of 8 731 credit card users,this paper analyzes seven key applicant characteristics and uses Logistic Regression model to accurately predict the overdue risk.To address the issues of data imbalance and prediction credibility,it uses the One-Hot Encoding technique to process the category data and solves it by sample balancing technique.In terms of model tuning,it takes into account the model Goodness of Fit and complexity synthetically,and fine-tunes the model parameters to significantly improve the reliability of the prediction.Compared with the 75.494%accuracy of the AIC model,the optimized Logistic Regression model shows better prediction performance.In addition,this paper comprehensively evaluates the model performance using ROC curve.The experimental results show that the optimized Logistic Regression model performs well in credit card overdue risk prediction,which provides strong support for risk management and decision-making of financial institutions.

Logistic Regression modelcredit card overdue risk predictiondata optimizationROC curve evaluation

张思扬

展开 >

西安欧亚学院,陕西 西安 710065

逻辑回归模型 信用卡逾期风险预测 数据优化 ROC曲线评估

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(19)