首页|基于Sentinel-2A NDVI时间序列数据和随机森林方法的高山冷凉蔬菜识别

基于Sentinel-2A NDVI时间序列数据和随机森林方法的高山冷凉蔬菜识别

扫码查看
该研究基于Sentinel-2A卫星的归一化差值植被指数(NDVI)时间序列数据,结合随机森林(RF)分类方法,对高山冷凉蔬菜种植区域进行精准识别与分类。以西吉县为研究区,利用 2023 年覆盖高山冷凉蔬菜全生育期的Sentinel-2A遥感数据,构建 10 m高空间分辨率的NDVI时间序列数据,结合田间实测数据,使用RF分类方法对高山冷凉蔬菜进行识别分类。结果表明文章提出的方法在高山冷凉蔬菜种植区域识别中表现出了较高的精度和稳定性,总体精度达93。52%,Kappa系数为0。89。
Identification of Alpine Cold Vegetables Based on Sentinel-2A NDVI Time Series Data and Random Forest Method
Based on the Normalized Difference Vegetation Index time series data of Sentinel-2A satellite,combined with Random Forest classification method,this study accurately identifies and classifies the alpine cold vegetables planting area.Taking Xiji County as the research area,the Sentinel-2A remote sensing data covering the whole growth period of alpine cold vegetables in 2023 is used to construct NDVI time series data with 10 m high spatial resolution.Combined with field measurement data,Random Forest classification method is used to identify and classify alpine cold vegetables.The results show that the proposed method shows high accuracy and stability in the identification of alpine cold vegetables planting area,the overall accuracy is 93.52%,and the Kappa coefficient is 0.89.

Sentinel-2ANormalized Difference Vegetation Index(NDVI)Random Forest(RF)alpine cold vegetable identification

马强、任元龙、李浩、王晓卓

展开 >

宁夏大学 葡萄酒与园艺学院,宁夏 银川 750021

Sentinel-2A 归一化差值植被指数(NDVI) 随机森林(RF) 高山冷凉蔬菜识别

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(19)