首页|基于K-means-LSTM组合算法的地质灾害监测设备故障排查模型设计

基于K-means-LSTM组合算法的地质灾害监测设备故障排查模型设计

扫码查看
为提高地质灾害预警的准确性和效率,提出了一种基于K-means聚类和长短期记忆网络(LSTM)的地质灾害监测设备故障排查模型。通过对地质监测数据的聚类分析,该模型能有效区分正常和异常运行状态的设备,为后续的深度学习分析提供了精准的数据基础。LSTM时序分析部分利用聚类结果,深入挖掘时间序列数据中的潜在模式和趋势,实现对设备故障类型及其发展趋势的准确预测。实验验证表明,该组合模型在地质灾害监测领域具有良好的应用潜力,能够为灾害预防和减灾提供有力的技术支持。未来研究将集中于进一步提升模型的准确性和泛化能力,探索更多算法组合和数据处理方法,以适应更加复杂的监测环境,推进监测系统的自动化和智能化。
Design of Fault Diagnosis Model for Geological Disaster Monitoring Equipment Based on K-means-LSTM Combination Algorithm
To improve the accuracy and efficiency of geological hazard early warning,this paper proposes a geological disaster monitoring equipment fault diagnosis model based on K-means clustering and LSTM.Through cluster analysis of geological monitoring data,the model can effectively distinguish equipment in normal and abnormal operating conditions,providing an accurate data basis for subsequent Deep Learning analysis.The LSTM Time Series Analysis part uses clustering results to deeply explore potential patterns and trends in time series data to achieve accurate predictions of equipment fault types and their development trends.Experimental verification shows that the combined model has good application potential in the field of geological disaster monitoring and can provide strong technical support for disaster prevention and reduction.Future research will focus on further improving the accuracy and generalization ability of the model,exploring more algorithm combinations and data processing methods to adapt to more complex monitoring environments,and promoting the automation and intelligence of the monitoring system.

K-means clustering algorithmLSTMgeological disaster monitoringequipment fault diagnosisTime Series Analysisautomated monitoringintelligent monitoring

王雅洁、张成梅、杨鑫、秦梅元

展开 >

贵州省分析测试研究院,贵州 贵阳 550000

贵州贵科大数据有限责任公司,贵州 贵阳 550008

贵州科学院,贵州 贵阳 550001

K-means聚类算法 长短期记忆网络(LSTM) 地质灾害监测 设备故障排查 时间序列分析 自动化监测 智能化监测

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(20)