首页|基于深度卷积神经网络的低照度图像增强方法

基于深度卷积神经网络的低照度图像增强方法

扫码查看
低照度条件下的图像细节和纹理难以分辨,导致信息丢失严重,传统增强方法需要大量人工调参、效率低且增强后细节不突出.为解决这一问题,提出一种基于卷积神经网络(CNN)的低照度图像增强模型,其通过数据驱动的网络结构自动学习低照度图像的分解与增强,并通过端到端训练更新模型参数.模型包括分解网络、光照调整网络和降噪模块,并在分解网络和光照调整网络中加入卷积块注意力模块(CBAM),以更全面地捕获图像中的重要信息.模型首先通过分解网络将图像分解为光照分量和反射分量,然后分别输入光照调整网络和降噪模块进行处理,最后重建得到增强后的图像.实验结果表明,与其他增强算法相比,该方法能更有效地提升低照度图像的对比度和纹理细节,提供更清晰可靠的图像质量.
Low Illumination Image Enhancement Method Based on Deep Convolutional Neural Networks
The image details and textures under low illumination conditions are difficult to distinguish,resulting in serious information loss.The traditional enhancement method requires a lot of manual adjustment for parameters,low efficiency and no prominent details after enhancement.To solve this problem,a low illumination image enhancement model based on Convolutional Neural Networks(CNN)is proposed.It automatically learns the decomposition and enhancement of low illumination image through a data-driven network structure,and updates model parameters by end-to-end training.This model includes modules of decomposition network,illumination adjustment network and noise reduction,and Convolutional Block Attention Module(CBAM)is added to the decomposition network and the illumination adjustment network,to capture important information in the image more comprehensively.This model firstly decomposes the image into the illumination component and the reflection component by the decomposition network,and then inputs the illumination adjustment network and noise reduction module respectively for processing,and finally reconstructs to obtain the enhanced image.The experimental results demonstrate that compared to other common enhancement algorithms,this method effectively improves the contrast and texture details of low illumination image,providing clearer and more reliable image quality.

low illumination imageimage enhancementCNNCBAM

徐俊、戎舒畅、李墨、刘煊、刘昭含、吴镇

展开 >

中国矿业大学(北京),北京 100083

低照度图像 图像增强 卷积神经网络 CBAM注意力机制

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(21)