首页|非独立同分布数据环境下的联邦学习激励机制设计

非独立同分布数据环境下的联邦学习激励机制设计

扫码查看
在联邦学习环境中,非独立同分布(Non-IID)数据的存在对模型性能和用户参与度提出了严峻挑战。为了应对这些挑战,文章提出了一种基于博弈论和深度强化学习的新型激励机制,以提升非IID数据环境下的联邦学习效果。通过设计中央服务器和用户的收益函数,综合考虑通信成本、计算成本和本地模型精度,公平衡量用户贡献,并利用博弈论模型和深度强化学习算法优化用户参与策略。实验结果表明,所提出的激励机制显著提升了模型的精度和用户的参与度,有效地缓解了非IID数据分布对联邦学习性能的负面影响,从而增强了整个系统的性能和稳定性。
Design of Federal Learning Incentive Mechanism in Non-IID Data Environment
In the Federated Learning environment,the existence of Non-Independent Identically Distributed(Non-IID)data poses a serious challenge to model performance and user engagement.To address these challenges,this paper proposes a new incentive mechanism based on game theory and Deep Reinforcement Learning,to improve the Federated Learning effect in Non-IID data environment.By designing the payofffunction of the central server and the user,considering the communication cost,computing cost and local model accuracy,the user contribution is measured fairly,and the user participation strategy is optimized by using the game theory model and the Deep Reinforcement Learning algorithm.The experimental results show that the proposed incentive mechanism significantly improves the accuracy of the model and the participation of users,and effectively alleviates the negative impact of Non-IID data distribution on Federated Learning performance,so as to enhance the performance and stability of the whole system.

Federated Learninggame theoryNon-IIDincentive mechanismDeep Reinforcement Learning

李秋贤、周全兴

展开 >

凯里学院,贵州 凯里 556011

联邦学习 博弈论 非独立同分布 激励机制 深度强化学习

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(22)