首页|基于深度学习的车牌检测与识别

基于深度学习的车牌检测与识别

License Plate Detection and Recognition Based on Deep Learning

扫码查看
随着计算机计算能力的提升,人工智能技术在传统领域的应用推动了智能化的发展.传统车牌识别算法在简单场景下表现良好,但面对图像畸变、模糊等复杂场景时,其鲁棒性则显著降低.该研究结合YOLOv5 深度学习模型和Tesseract-OCR库,开发了一种适应复杂场景的高效车牌识别系统.系统分为车牌检测和字符识别两部分,显著提升了在不利条件下的识别性能和系统鲁棒性.实验结果表明,系统在多种复杂场景下的车牌检测和字符识别平均精确率分别为98.56%和96.56%,证明了该方法的有效性和优越性能.
With the improvement of computer computing power,the application of Artificial Intelligence technology in traditional fields promotes the development of intelligence.While traditional license plate recognition algorithms perform well in simple scenarios,their robustness significantly decreases in complex situations characterized by image distortion and blurriness.This research develops an efficient license plate recognition system suitable for complex scenarios by integrating the YOLOv5 Deep Learning model and the Tesseract-OCR library.The system is divided into two parts of license plate detection and character recognition,substantially improving recognition performance and system robustness under adverse conditions.Experimental results demonstrate that the system achieves average precision rates of 98.56%for license plate detection and 96.56%for character recognition across various complex scenarios,proving the effectiveness and superior performance of the approach.

Deep LearningYOLOv5Tesseract-OCRlicense plate recognitionrobustness

刘凌远

展开 >

广东东软学院 国际教育学院,广东 佛山 528225

深度学习 YOLOv5 Tesseract-OCR 车牌识别 鲁棒性

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(23)