首页|基于Pandas+Seaborn+Matplotlib的城市共享单车租赁分析可视化

基于Pandas+Seaborn+Matplotlib的城市共享单车租赁分析可视化

Visualization of Urban Sharing Bicycle Rental Analysis Based on Pandas+Seaborn+Matplotlib

扫码查看
在现代城市交通中,共享单车的普及带来了大量骑行数据,蕴含丰富的用户行为信息.文章旨在通过对Kaggle共享单车数据集的深入分析,探讨影响共享单车使用模式的主要因素.采用Python的Pandas库进行数据处理,并利用Seaborn和Matplotlib进行可视化分析,以直观展示数据特征和用户行为模式.研究发现,租赁数量与温度、湿度及风速等气象因素密切相关,且在特定时段内租赁活动更为频繁.这一研究不仅展示了Pandas、Seaborn及Matplotlib在数据可视化中的优越性,还为城市交通管理和共享单车运营提供了数据支撑,从而优化交通管理、提升用户体验.
The widespread adoption of sharing bicycles in modern urban transportation has brought a vast amount of riding data which contains rich information about user behavior.This paper aims to conduct an in-depth analysis of the Kaggle sharing bicycle dataset to explore the main factors influencing sharing bicycle usage patterns.It utilizes Pandas library of Python for data processing and employs Seaborn and Matplotlib for visual analysis,providing an intuitive display of data characteristics and user behavior patterns.The study finds that rental quantities are closely related to meteorological factors such as temperature,humidity,and wind speed,with rental activities being more frequent during specific time periods.This research not only demonstrates the superiority of Pandas,Seaborn,and Matplotlib in data visualization,but also provides data support for urban traffic management and sharing bicycle operation,thereby optimizing traffic management and enhancing user experience.

Big Data analysisvisualizationsharing bicycle dataPython

徐豪、刘婉月、张自豪

展开 >

河南工业大学 人工智能与大数据学院,河南 郑州 450001

科大讯飞股份有限公司,安徽 合肥 230088

大数据分析 可视化 共享单车数据 Python

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(23)