首页|基于数据增强的深度学习声学场景分类算法

基于数据增强的深度学习声学场景分类算法

Deep Learning Acoustic Scene Classification Algorithm Based on Data Enhancement

扫码查看
根据卷积神经网络具有学习能力强、可移植性高的优点,结合数据增强可提升模型泛化能力的特点,提出了一种基于数据增强的深度学习声学场景分类方法,其次构建基于VGG16 和Mixup的声学场景分类模型,最后在ESC-50数据集上对实验模型进行广泛的测试.实验结果表明,使用Mixup数据增强方法能够提升6.44%的模型准确率,且模型在该数据集上获得了81.56%的分类准确率,优于基线系统37.26%的准确率,验证了该方法的可靠性和有效性,且能够有效提高模型的分类效果.
Based on the advantages of Convolutional Neural Networks,such as strong learning ability and high portability,and combined with the characteristic that data enhancement can improve the model's generalization ability,a Deep Learning acoustic scene classification method based on data enhancement is proposed.Then,this paper constructs an acoustic scene classification model based on VGG16 and Mixup.Finally,extensive tests are conducted on the experimental model using the ESC-50 dataset.The experimental results indicate that the use of the Mixup data enhancement method can improve the model's accuracy by 6.44%,and the model achieves a classification accuracy of 81.56%on this dataset,which is higher than the accuracy of the baseline system by 37.26%.This confirms the reliability and effectiveness of this method and can effectively improve the model's classification performance.

Convolutional Neural NetworksDeep Learningacoustic scene classificationdata enhancement

伍谷馨、胡异丁、杨栋

展开 >

五邑大学 电子与信息工程学院,广东 江门 529020

广州大学 工程抗震研究中心,广东 广州 510006

卷积神经网络 深度学习 声学场景分类 数据增强

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(23)