首页|基于改进VGG16网络的小尺寸图像识别研究

基于改进VGG16网络的小尺寸图像识别研究

Research on Small-size Image Recognition Based on Improved VGG16 Network

扫码查看
在嵌入式系统和边缘计算中,为提高VGG16 卷积神经网络对小尺寸图像识别的计算效率,通过调整模型全连接层数量、卷积核数量和使用全局平均池化替代全连接层等方式对VGG16 网络进行改进,降低网络模型的可训练参数量.将改进的神经网络模型在图像增强的CIFAR-10 数据集上进行训练,训练集达到 99%以上的识别准确率,测试集可以达到 90%以上的识别准确率,改进后的网络模型参数量较VGG16 网络参数量减少了 89.04%,验证了改进网络模型的有效性.
In embedded systems and edge computing,in order to improve the computational efficiency of the VGG16 Convolutional Neural Networks for small-size image recognition,the VGG16 network is improved by adjusting the number of fully connected layers and the number of convolutional kernels in the model,using global average pooling to replace fully connected layers,and other ways,so as to reduce the number of trainable parameters of the network model.The improved neural network model is trained on the CIFAR-10 dataset with image enhancement.The recognition accuracy of the training set reaches more than 99%,and the recognition accuracy of test set can reach more than 90%.The number of parameters of the improved network model is reduced by 89.04%compared with the VGG16 network,which verifies the effectiveness of the improved network model.

Convolutional Neural NetworksVGG16CIFAR-10 datasetnetwork lightweightimage enhancement

陈灵方、张鹏、李昆、杨航、邱媛媛

展开 >

新疆理工学院,新疆 阿克苏 843100

卷积神经网络 VGG16 CIFAR-10数据集 网络轻量化 图像增强

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(23)
  • 1