首页|大数据视角下的城乡建设发展与规划聚类分析

大数据视角下的城乡建设发展与规划聚类分析

Clustering Analysis of Urban and Rural Construction Development and Planning from the Perspective of Big Data

扫码查看
2023 年广东省大学生计算机设计大赛大数据专题赛提供了 9 份收集自国家统计局的数据,该研究根据 9份数据中包含的 20 类指标数据分析各省市城乡建设发展情况.分别使用Python语言机器学习中的K-means和GMM聚类模型,并结合PCA主成分分析、构建自编码器、构造特征工程三种方式进行特征降维,对我国大陆 31 个省市自治区进行大数据分析,把各省市按城乡建设发展程度聚类为发达、中等、一般 3 类.聚类模型分析的结果与当前我国城乡发展实际高度契合.
The 2023 Guangdong University Student Computer Design Competition Big Data Special Competition provided nine data collected from the National Bureau of Statistics.This paper analyzes the urban and rural construction development situation in various provinces and cities based on 20 types of indicators included in the nine data.This paper uses the K-means and GMM clustering model in Machine Learning of Python language respectively,and combines three ways of PCA,constructing autoencoder and constructing feature engineering to carry out feature dimensionality reduction.Big Data analysis is conducted on 31 provinces,cities and autonomous regions in mainland China,and provinces and cities are clustered into developed,moderate and average three categories according to the degree of urban and rural construction development.The results of clustering model analysis are highly consistent with the actual reality of urban and rural development in China.

Big Dataurban and rural developmentclusteringK-meansGMM

黄杰晟、李晓强

展开 >

广东开放大学 人工智能学院,广东 广州 510091

大数据 城乡发展 聚类 K-means GMM

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(23)