首页|基于注意力机制改进的车载视频路况分析与应用

基于注意力机制改进的车载视频路况分析与应用

Analysis and Application of In-automobile Video Road Condition Based on Attention Mechanism

扫码查看
随着汽车保有量的增加,智能交通中路况分析技术变得日益重要.它广泛应用于目标检测、自动驾驶和汽车碰撞危险预警等领域,具有显著的研究意义.文章基于Python语言,提出了一种结合YOLOv5s和Attention机制的改进模型,实现了路况检测与车流量分析,能广泛用于汽车碰撞危险等级预警的场景,结合对乘员坐姿的智能识别,可以为乘员提供更恰当的保护.系统支持用户上传图像,利用改进模型对车辆进行识别并统计车流量,实现对路况的分析.实验采用近 8 万张图片的数据集,其中 80%用于训练,20%用于测试.结果表明,改进后的模型在目标检测性能上有明显提升,准确度和效率优于基础模型,在预警汽车碰撞等领域具有一定的实际意义.
With the increase in the number of automobiles,road condition analysis technology in intelligent transportation has become increasingly important.It is widely used in the fields of Object Detection,autonomous driving and automobile collision hazard early warning,and has significant research significance.Based on the Python language,this paper proposes an improved model combining YOLOv5s and Attention Mechanism,which realizes road condition detection and traffic flow analysis and can be widely used in the scene of automobile collision hazard level early warning.It can provide more appropriate protection for passengers in combination with the intelligent recognition of passengers'sitting position.The system supports users to upload images,and uses the improved model to identify automobiles and count traffic flow to realize the analysis of road condition.The experiment uses a dataset of nearly 80 000 images,of which 80%is used for training and 20%for testing.The results show that the improved model has a significant improvement in Object Detection performance,and its accuracy and efficiency are better than those of the basic model,which has a certain practical significance in the automobile collision early warning and other fields.

Attention Mechanismroad condition analysisObject Detectioncollision early warning

许德衡、项菲菲、王炳琨、余盼、林钰翔

展开 >

江西科技学院,江西 南昌 330098

Attention机制 路况分析 目标检测 碰撞预警

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(23)