首页|基于全同态加密的联邦学习隐私保护技术研究

基于全同态加密的联邦学习隐私保护技术研究

Research on Privacy Protection Technology for Federated Learning Based on Fully Homomorphic Encryption

扫码查看
随着数据隐私保护需求的不断增加,联邦学习作为一种分布式机器学习方法,能够在不集中数据的情况下进行模型训练.而联邦学习仍面临参与方数据在模型训练过程中泄露的风险.为解决这一问题,文章提出了一种基于全同态加密的联邦学习隐私保护技术.通过在联邦学习的模型参数聚合阶段引入全同态加密技术,使得参数计算和更新均在加密态下完成,从而确保了参与方数据的隐私安全.同时设计了一个高效的隐私保护框架,并在多个公开数据集上进行了实验验证.实验结果表明,所提出的联邦学习框架不仅保证了模型准确性,也提高了数据隐私保护的安全性和计算效率.
With the increasing demand for data privacy protection,Federated Learning could conduct the model training without centralizing data as a Distributed Machine Learning method.However,Federated Learning still faces the risk of participant data leakage in the process of model training.To address this issue,this paper proposes a privacy protection technique for Federated Learning based on Fully Homomorphic Encryption.By introducing FHE technology into the model parameter aggregation phase of Federated Learning,the parameter computation and updates are performed in an encrypted state,so as to ensure the privacy security of the participant data.At the same time,this paper designs an efficient privacy protection framework and conducts experimental validation on multiple public datasets.The experimental results show that the proposed Federated Learning framework not only ensures the accuracy of the model,but also improves the security and computing efficiency of data privacy protection.

Federated LearningFully Homomorphic Encryptionprivacy protectionDistributed Machine Learningdata security

李秋贤、周全兴

展开 >

凯里学院,贵州 凯里 556011

联邦学习 全同态加密 隐私保护 分布式机器学习 数据安全

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(23)