首页|基于改进YOLOv8的印刷电路板缺陷检测方法研究

基于改进YOLOv8的印刷电路板缺陷检测方法研究

扫码查看
为了解决印刷电路板表面小目标缺陷检测精度较低与检测效率不高的问题,文章提出了基于改进YOLOv8的印刷电路板缺陷检测方法。在YOLOv8 模型主干网络中使用简单空间金字塔池化融合模块,采用修正的线性单元激活函数,有效地提升了检测效率;使用改进的瓶颈注意力模块,利用通道注意力分支与空间注意力分支,使模型具有较强的表征能力获取特征信息,提升了检测精度;对损失函数进行了改进,构建了WIoU损失函数,降低了锚框与目标框重合时几何因素的影响。在印刷电路板电路板瑕疵数据集上,网络模型的检测精度mAP@0。5 值达到了 90。2%,相比原网络模型提高了5。7%,对印刷电路板缺陷检测具有重要的意义。
Research on Defect Detection Method of Printed Circuit Board Based on Improved Yolov8
In order to solve the problem of low detection accuracy and low detection efficiency of small target defects on the surface of the Printed Circuit Board,this paper proposes the Printed Circuit Board defect detection method based on improved YOLOv8.The Simplified Spatial Pyramid Pooling Fast module is used in the YOLOv8 model backbone network,and the Rectified Linear Unit activation function is used to effectively improve the detection efficiency.Using the improved Bottleneck Attention Module,the channel attention branch and the spatial attention branch are used to make the model have a strong representation ability to obtain feature information and improve the detection accuracy.The loss function is improved,and the WIoU loss function is constructed to reduce the influence of geometric factors when the anchor box coincides with the target box.On the defect data set of Printed Circuit Board,the detection accuracy mAP@0.5 value of the network model reaches 90.2%,which is 5.7%higher than that of the original network model,which is of great significance to the defect detection of Printed Circuit Board.

YOLOv8Printed Circuit Boarddefect detection

金强山、冯光、田纪亚、张一川

展开 >

新疆理工学院,新疆 阿克苏 843100

YOLOv8 印刷电路板 缺陷检测

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(24)