首页|基于YOLOv3的图像特征融合的车辆再识别算法研究

基于YOLOv3的图像特征融合的车辆再识别算法研究

扫码查看
为提高车辆再识别的准确率,提出了一种全局特征与局部特征相结合的方法,解决了车辆再识别时因车牌模糊,车辆轮廓不清晰,遮挡等因素而导致车牌识别精度低的问题。首先,使用孪生网络对待检测的车辆图像进行车尾形状、车头外观、车辆整体形状匹配,然后,使用基于YOLOv3 的车牌识别网络,进行车辆局部形状、整体形状和车牌识别结合进行车辆再识别。结果表明,提出的方法在道路环境多变的情况下能很好地实现车辆再识别,再识别的综合准确率达到了93。63%,比DRDL、OIFE、RAM算法的再识别模型的准确率分别高7。28%、3。08%、0。75%。
Research on Vehicle Re-recognition Algorithm of Image Feature Fusion Based on YOLOv3
In order to improve the accuracy of vehicle re-recognition,a method combining global and local features is proposed,which solves the problem of low license plate recognition accuracy caused by factors such as blurred license plates,unclear vehicle contours,and occlusion during vehicle re-recognition.Firstly,this paper uses Siamese Network to match the rear shape,front appearance,and overall vehicle shape of the vehicle images to be detected.Then,it uses the LPRNet based on YOLOv3 to combine the vehicle local shape,overall shape,and license plate recognition for vehicle re-recognition.The results show that the proposed method can achieve vehicle re-recognition under the changeable road environment,and the comprehensive accuracy of re-recognition reaches 93.63%,which is 7.28%,3.08%and 0.75%higher than the re-recognition model of DRDL,OIFE and RAM,respectively.

Artificial IntelligenceDeep Learningvehicle re-recognition

刘艳洋、闫昊

展开 >

张家口学院,河北 张家口 075000

智慧互通科技股份有限公司,河北 张家口 075000

人工智能 深度学习 车辆再识别

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(24)