首页|基于Mask RCNN的裂缝图像识别与渐进式自动标注方法研究

基于Mask RCNN的裂缝图像识别与渐进式自动标注方法研究

扫码查看
文章提出了一种渐进式全自动标注算法,分三个阶段标注裂缝样本:首先,在白纸上画线绘制假裂缝,提取裂缝轮廓制作标签,训练生成一级权重文件;利用一级权重文件识别白墙上的裂缝,优化掩膜后制作标签,训练生成二级权重文件;最后,用二级权重文件分批检测混凝土裂缝,优化并提取掩膜轮廓,生成标签并循环训练生成三级权重文件。训练后Mask RCNN模型对三类图像的识别综合评价指标(Evaluation indicator)分别为 95。2%、83。3%、79。2%,识别率较高,可用于裂缝的快速识别。
Research on Crack Image Recognition and Progressive Automatic Annotation Method Based on Mask RCNN
This paper presents a progressive fully automatic annotation algorithm,which annotates crack samples in three stages.Firstly,it draws fake cracks by drawing lines on white paper,and extracts the crack contours to make labels,and then trains to generate the first-level weight file.Secondly,it uses the first-level weight file to identify the cracks on the white wall,and optimizes the mask to make labels,and then trains to generate the second-level weight file.Finally,it utilizes the second-level weight file to conduct batch detection of concrete cracks,optimizes and extracts the mask contours to generate labels,and then trains cyclically to produce the third-level weight file.After training,the comprehensive evaluation indicators of the Mask RCNN model for the recognition of three types of images are 95.2%,83.3%,and 79.2%,respectively.The detection rate is relatively high and this model can be applied to the rapid recognition of cracks.

crackprogressive automatic annotationcontour extractionDeep Learning

邱先志、李登华、郭林啸、徐海涛、丁勇

展开 >

国家能源集团新疆开都河流域水电开发有限公司,新疆 库尔勒 841009

南京水利科学研究院,江苏 南京 210029

水利部土石坝破坏机理与防控技术重点试验室,江苏 南京 210029

南京理工大学,江苏 南京 210094

展开 >

裂缝 渐进式自动标注 轮廓提取 深度学习

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(24)