首页|融合用户偏好与新闻方面级特征表示的推荐框架

融合用户偏好与新闻方面级特征表示的推荐框架

扫码查看
文章提出了一种基于方面级的用户偏好和新闻特征表示学习的新闻推荐框架(ALNR),通过新闻方面级编码器和用户方面级编码器分别学习用户偏好和新闻方面级特征表示。这些编码器的设计能够捕捉用户和新闻之间的差异,以此预测用户点击候选新闻项目的概率,从而提高了推荐系统的个性化水平。通过在MIND数据集上进行实验,验证了所提出方法明显优于当前领先的基线方法,进一步证明了方面级特征的重要性。
Recommendation Framework Integrating User Preferences and News Aspect-level Feature Representation
This proposes a news recommendation framework(ALNR)based on aspect-level user preferences and news feature representation learning.By news aspect-level encoders and user aspect-level encoders,it learns user preferences and news aspect-level feature representations separately.The design of these encoders allows for the capture of differences between users and news,enabling the prediction of the probability of a user clicking on a candidate news item,thereby enhancing the personalization level of the recommendation system.Through experiments conducted on the MIND dataset,it has been verified that the proposed method significantly outperforms the current leading baseline method,further demonstrating the importance of aspect-level features.

news recommendationuser preferenceaspect-level featurerepresentation learning

耿宜鹏、崔庆华

展开 >

南通理工学院,江苏 南通 226002

新闻推荐 用户偏好 方面级特征 表示学习

2024

现代信息科技
广东省电子学会

现代信息科技

ISSN:2096-4706
年,卷(期):2024.8(24)