首页|基于ARIMA模型预测镇江市肺结核流行趋势及分析

基于ARIMA模型预测镇江市肺结核流行趋势及分析

扫码查看
目的 通过构建季节性差分整合移动平均自回归模型(ARIMA模型)预测江苏省镇江市肺结核流行趋势并验证模型的有效性,探讨新型冠状病毒感染疫情对肺结核流行情况的影响.方法 收集江苏省镇江市2014-2022年肺结核月发病数资料,构建季节性ARIMA模型,以2022年1-12月肺结核发病数验证预测模型效果,并分析预测误差产生的原因.结果 2014-2022年镇江市共报告肺结核病例11 316例,除2017、2019年发病率有所回升外,总体发病率呈下降趋势,发病主要集中在3-8月.ARIMA(1,1,1)(1,1,0)12的BIC值(5.913)最小,残差白噪声也通过检验.但短期自相关部分的AR系数不显著,因此建立ARIMA(0,1,1)(1,1,0)12.2022年镇江市肺结核月发病数实际值与预测值存在一定的偏差(平均相对预测误差为19.20%),但均在拟合值的95%可信区间内,实际月发病数(平均78例/月)与预测值(平均78例/月)变化趋势基本一致,模型拟合度较好,可用于预测镇江市肺结核流行情况.结论 利用该模型对短期内镇江市肺结核发病数进行预测,认为镇江市肺结核流行总体上仍将长期保持下行趋势.
Prediction and analysis of pulmonary tuberculosis epidemic trend in Zhenjiang City based on ARIMA
Objective To predict the trend of pulmonary tuberculosis prevalence in Zhenjiang City of Jiangsu Province by constructing a seasonal autoregressive integrated moving average(ARIMA)model and verify the effectiveness of the model,and to explore the impact of the COVID-19 pandemic on the prevalence state of pulmonary tuberculosis.Methods The pulmonary tuberculosis monthly incidence data during 2014-2022 in Zhenjiang City of Jiangsu Province were collected to construct a seasonal ARIMA model.The model's predictive performance was validated by using the onset number of pulmonary tuberculosis from January to December 2022,and the causes of prediction errors were analyzed.Results A total of 1 316 cases of pulmona-ry tuberculosis were reported in Zhenjiang City during 2014-2022.The overall incidence rate showed a down-ward trend,except for the slight increase in 2017,2019.The onset was mainly concentrated from March to Au-gust.The ARIMA model with parameters(1,1,1)(1,1,0)12 had the lowest BIC value(5.913),and the white noise residuals also passed the test.However,the AR coefficient in the short-term autocorrelation was not sig-nificant,so the ARIMA model with parameters(0,1,1)(1,1,0)12 was established.There was a certain devia-tion between the actual value and predictive value in monthly incidence number of pulmonary tuberculosis in Zhenjiang City during 2022(average relative prediction error of 19.20%).However,all were within the 95%confidence interval of the fitted values.The change trend of the actual monthly incidence number(average 78 cases/month)was basically consistent with the predicted value(average 78 cases/month).The model fitting degree was well and could be used to predict the epidemiological situation of pulmonary tuberculosis in Zhen-jiang City.Conclusion This model is used to predict the incidence number of pulmonary tuberculosis in Zhen-jiang City in the short term,and it is considered that the overall trend of pulmonary tuberculosis epidemic in Zhenjiang City will remain the downward trend in the long run.

Autoregressive Integrated Moving Average modelTuberculosisPrediction of infec-tious diseasesCOVID-19Zhenjiang

伍鸿远、夏媛媛

展开 >

南京医科大学医政学院,江苏 南京 211166

ARIMA模型 肺结核 传染病预测 新型冠状病毒感染 镇江

国家社会科学基金重大项目江苏高校哲学社会科学重点研究基地项目国家级大学生创新创业训练计划

20&ZD2242020RWPT0101202210312047Z

2024

现代医药卫生
重庆市卫生信息中心

现代医药卫生

影响因子:0.758
ISSN:1009-5519
年,卷(期):2024.40(1)
  • 15