首页|基于CHA2DS2-VASc评分建立COPD患者脑卒中风险的列线图模型及预测价值

基于CHA2DS2-VASc评分建立COPD患者脑卒中风险的列线图模型及预测价值

扫码查看
目的 构建慢性阻塞性肺疾病(COPD)患者发生脑卒中风险的预测模型,并对比该模型与CHA2DS2-VASc评分在预测COPD患者脑卒中风险方面的价值。方法 选取该中心2022-2023年住院的COPD患者213例,进行为期1年的随访,收集新发脑卒中事件情况。按是否发生脑卒中将患者分为卒中组45例和非卒中组168例,比较2组患者各指标的差异。通过logistic回归分析,研究影响COPD患者发生脑卒中的各种因素,建立列线图模型并进行内部验证,应用受试者工作特征(ROC)曲线法评估列线图模型和CHA2DS2-VASc评分在COPD患者脑卒中发病中的预测作用。结果 logistic回归分析证实,年龄、独立生活、脑卒中史、抗凝血治疗、CHA2DS2-VASC评分是COPD患者发生脑卒中的独立影响因素[比值比(OR)95%可信区间(95%CI)分别为 3。398(1。380~8。371)、0。281(0。102~0。775)、18。869(2。324~153。217)、0。006(0。001~0。043)、2。079(1。345~3。216),P<0。05]。以此构建列线图模型,ROC 曲线下面积(AUC)为0。904(95%CI:0。852~0。955),灵敏度为89。9%,特异度为77。8%,表明模型均具有良好的区分度;Hosmer-Lemeshow拟合优度检验表明x2=3。500,P=0。744,说明模型具有较好的校准度。Delong检验显示,该列线图模型较CHA2DS2-VASc评分(AUC=0。741)具有更高的预测价值(Z=5。610,P<0。001)。结论 构建的列线图模型具有良好区分度和校准度,可有效提高对COPD患者发生脑卒中的预测价值,从而为COPD患者脑卒中风险的早期评估和即时干预提供科学依据。
Nomogram model and predictive value for stroke risk in COPD patients based on CHA2DS2-VASc score
Objective To develop a predictive model for stroke risk in patients with chronic obstructive pulmonary disease(COPD)and compare its value with the CHA2DS2-VASc score in predicting stroke risk in COPD patients.Methods A total of 213 COPD patients hospitalized in this center from 2022 to 2023 were en-rolled and followed up for one year to collect data on new-onset stroke events.The patients were divided into a stroke group(45 cases)and a non-stroke group(168 cases)based on whether they experienced a stroke,and differences in various indicators between the two groups were compared.Logistic regression analysis was con-ducted to investigate various factors influencing stroke occurrence in COPD patients,a nomogram model was established and internally validated,and the receiver operating characteristic(ROC)curve method was applied to evaluate the predictive role of the nomogram model and the CHA2DS2-VASc score in stroke onset among COPD patients.Results Logistic regression analysis confirmed that age,independent living,history of stroke,anticoagulant therapy,and CHA2DS2-VASc score were independent influencing factors for stroke occurrence in COPD patients[odds ratio(OR)95% confidence interval(95% CI)were 3.398(1.380-8.371),0.281(0.102-0.775),18.869(2.324-153.217),0.006(0.001-0.043),and 2.079(1.345-3.216),respectively,P<0.05].Based on these factors,a nomogram model was constructed,with an area under the ROC curve(AUC)of 0.904(95% CI:0.852-0.955),a sensitivity of 89.9%,and a specificity of 77.8%,indicating good discrimination of the model.The Hosmer-Lemeshow goodness-of-fit test showed X2=3.500,P=0.744,indi-cating good calibration of the model.The Delong test showed that the nomogram model had higher predictive value than the CHA2DS2-VASc score(AUC=0.741)(Z=5.610,P<0.001).Conclusion The constructed nomogram model demonstrates good discrimination and calibration and can effectively improve the predictive value for stroke occurrence in COPD patients,thereby providing a scientific basis for early assessment and timely intervention in stroke-risk groups among COPD patients.

CHA2DS2-VASc scoreNomogram modelStrokeChronic obstructive pulmonary diseasePredictive value

王路、张方、刘爽、岳晓蓉、吕丽、李青清

展开 >

重庆市渝中区大坪街道社区卫生服务中心全科医学科,重庆 400010

CHA2DS2-VASc评分 列线图模型 脑卒中 慢性阻塞性肺疾病 预测价值

2024

现代医药卫生
重庆市卫生信息中心

现代医药卫生

影响因子:0.758
ISSN:1009-5519
年,卷(期):2024.40(24)