首页|利用深度算法构建高频肌骨超声诊断痛风性关节炎掌指关节病变的人工智能系统及验证

利用深度算法构建高频肌骨超声诊断痛风性关节炎掌指关节病变的人工智能系统及验证

扫码查看
目的 利用深度算法构建高频肌骨超声诊断痛风性关节炎掌指关节病变的人工智能系统,并验证该系统的诊断效能。方法 回顾性收集2017年2月至2023年12月在该院行超声检查的410例痛风性关节炎患者的手部高频肌骨超声图像,并按照7:3的比例将其分为训练集(n=287)和验证集(n=123)。利用深度算法构建诊断痛风性关节炎掌指关节病变的人工智能系统,应用训练集进行深度算法训练。以掌指关节滑液偏振光检查阳性为判断标准,比较低资历、高资历超声医生与人工智能系统对验证集痛风性关节炎掌指关节病变的诊断效能。结果 410例痛风性关节炎患者中有343例存在掌指关节病变,发生率为83。66%。人工智能系统诊断验证集患者掌指关节病变的灵敏度、特异度、准确度、受试者工作特征曲线下面积(AUC)分别为85。29%、85。71%、85。37%、0。855。高资历超声医生诊断验证集患者掌指关节病变的灵敏度、准确度均高于低资历超声医生,差异均有统计学意义(P<0。05)。人工智能系统诊断验证集患者掌指关节病变的灵敏度、准确度均高于低资历超声医生,准确度低于高资历超声医生,差异均有统计学意义(P<0。05),灵敏度与高资历超声医生比较,差异无统计学意义(P>0。05)。结论 利用深度算法构建的人工智能系统对患者中痛风性关节炎高频肌骨超声图像中掌指关节病变的诊断效能良好,且相较于低资历超声医生的诊断价值更高。
Development and validation of an artificial intelligence system based on deep algorithms for diagnosing metacarpophalangeal joint lesions in gouty arthritis using high-frequency musculoskeletal ultrasound
Objective To develop an artificial intelligence(AI)system based on deep algorithms for di-agnosing metacarpophalangeal(MCP)joint lesions in gouty arthritis using high-frequency musculoskeletal ul-trasound and to validate its diagnostic performance.Methods High-frequency musculoskeletal ultrasound im-ages of the hands of 410 patients with gouty arthritis who underwent ultrasonography in our hospital from February 2017 to December 2023 were retrospectively collected and divided into a training set(n=287)and a validation set(n=123)in a 7:3 ratio.An AI system for diagnosing MCP joint lesions in gouty arthritis was developed using deep algorithms and trained with the training set.With positive polarized light examination of MCP joint synovial fluid as the diagnostic criterion,the diagnostic performance of junior and senior ultrasound physicians and the AI system for MCP joint lesions in gouty arthritis in the validation set was compared.Re-sults Among the 410 patients with gouty arthritis,343 had MCP joint lesions,with an incidence rate of 83.66% .The sensitivity,specificity,accuracy,and area under the receiver operating characteristic curve(AUC)of the AI system for diagnosing MCP joint lesions in the validation set were 85.29%,85.71%,85.37%,and 0.855,respectively.The sensitivity and accuracy of the senior ultrasound physicians in diagno-sing MCP joint lesions in the validation set were higher than those of the junior ultrasound physicians,with statistically significant differences(P<0.05).The sensitivity and accuracy of the AI system in diagnosing MCP joint lesions in the validation set were higher than those of the junior ultrasound physicians but lower than those of the senior ultrasound physicians,with statistically significant differences(P<0.05).However,there was no statistically significant difference in sensitivity between the AI system and the senior ultrasound physicians(P>0.05).Conclusion The AI system developed using deep algorithms has good diagnostic per-formance for MCP joint lesions in high-frequency musculoskeletal ultrasound images of patients with gouty arthritis and provides higher diagnostic value compared to junior ultrasound physicians.

Deep algorithmsHigh-frequency musculoskeletal ultrasoundGouty arthritisMetacarpophalangeal joint lesionsArtificial intelligence

樊向斌、郑兰兰、孙婕、姚晶晶

展开 >

平煤神马医疗集团总医院超声诊断科,河南平顶山 467000

深度算法 高频肌骨超声 痛风性关节炎 掌指关节病变 人工智能

2024

现代医药卫生
重庆市卫生信息中心

现代医药卫生

影响因子:0.758
ISSN:1009-5519
年,卷(期):2024.40(24)