首页|基于FireNet的古建筑火灾检测方法研究及改进

基于FireNet的古建筑火灾检测方法研究及改进

扫码查看
针对古建筑火灾检测需要快速、准确及实时的需求,建立了一个专门用于古建筑火灾检测的数据集,用于古建筑火灾检测的深度学习研究.利用CBAM注意力机制模块,结合多尺度特征融合,对FireNet网络进行改进,提出适用于古建筑火灾检测的轻量级FireNet-AMF网络,在FireNet数据集和本文构建的古建筑火灾检测数据集上验证了FireNet-AMF网络的火灾检测能力.与改进前的网络相比,FireNet-AMF网络在FireNet数据集上对火灾识别的准确率达到了 95.08%,与原网络相比提高了1.17%,在本文构建的古建筑火灾检测数据集上的准确率达到了95.62%,比原网络提高了1.62%.该网络在保证轻量级的同时也保证了在古建筑火灾检测中较高的检测精度.
Research and improvement of fire detection method for historical buildings based on FireNet
In response to the need for fast,accurate,and real-time fire detection of historical buildings,this paper builds a data-set specifically for historical building fire detection,which is used for deep learning in historical building fire detection for the first time.By fusing the CBAM attention mechanism and combining it with multi-scale feature fusion,we improve and propose the FireNet-AMF network based on the FireNet network.The fire detection capability of the FireNet-AMF network is verified on the FireNet dataset and the historical building fire detection data-set.The FireNet-AMF network achieves an accuracy of 95.08%for fire detection with the FireNet dataset,an improvement of 1.17%compared to the FireNet network,and an accuracy of 95.62%for experiments on the historical building fire detection dataset we built,which is an improvement of 1.62%compared to the FireNet network.The network ensures a light weight while guaranteeing a high level of historical building fire detection accu-racy.

historical buildingfire detectionimage classificationFireNetattention mechanismmulti-scale feature fusion

陈庆典、钟晨、刘慧、王晓辉

展开 >

北京建筑大学 电气与信息工程学院,北京 102616

应急管理部沈阳消防研究所,辽宁 沈阳 110034

建筑大数据智能处理方法研究北京市重点实验室,北京 102616

古建筑 火灾检测 图像分类 FireNet 注意力机制 多尺度特征融合

国家重点研发计划课题

2020YFC1522804

2024

消防科学与技术
中国消防协会

消防科学与技术

CSTPCD北大核心
影响因子:0.846
ISSN:1009-0029
年,卷(期):2024.43(2)
  • 1