首页|融合注意力机制的轻量级火灾检测模型

融合注意力机制的轻量级火灾检测模型

扫码查看
基于视觉信息的火灾检测对消防工作具有重要意义,但现阶段相关研究提出的方法大多是基于高性能的硬件设备开展,这限制了相关成果的实际应用.在YOLOv5目标检测算法基础上使用ShuffleNetv2网络为主干构造轻量化模型,并引入SIoU损失函数提高模型目标框的定位精度,同时在模型中添加Shuffle Attention注意力机制,提高在复杂环境下对目标火焰的识别精度.试验证明,与YOLOv5原模型相比,改进后的模型在实现更好识别效果的同时,参数量减少了54.2%,检测速度提升了40.5%.将模型部署嵌入式设备验证其应用效率,结果显示,模型在实现32帧/s检测速度的同时维持了较好的识别效果.
A lightweight fire detection model integrating attention mechanism
Based on visual information,fire detection is of great significance to fire protection work.However,most of the meth-ods proposed by relevant research institutions at this stage are based on high-performance hardware devices,which limits the practical deployment and application of relevant results.In re-sponse to this,this paper uses ShuffleNetv2 network as the main backbone to construct a lightweight model based on YOLOv5 tar-get detection model,and introduces the SIoU loss function to im-prove the positioning accuracy of the model's target box.Addition-ally,the Shuffle Attention module is added to the model to im-prove its recognition accuracy of flame targets in complex environ-ments.Experiments have shown that compared to the original YOLOv5 model,the improved model not only achieves better recognition results but also reduces the parameter count by 54.2%and improves detection speed by 40.5%.Finally,the model is de-ployed to embedded devices to verify its application efficiency,and the results show that while maintaining recognition perfor-mance,the model achieves a detection speed of 32 f/s.

convolutional neural networksfire monitoringYo-lov5attention moduleJetson Nano

曹康壮、焦双健

展开 >

中国海洋大学 工程学院,山东 青岛 266400

卷积神经网络 火灾检测 YOLOv5 注意力机制 JetsonNano

2024

消防科学与技术
中国消防协会

消防科学与技术

CSTPCD北大核心
影响因子:0.846
ISSN:1009-0029
年,卷(期):2024.43(3)
  • 15