首页|基于Transformer神经网络的锂电池热失控多数据融合探测

基于Transformer神经网络的锂电池热失控多数据融合探测

扫码查看
为满足对锂离子电池热失控高效准确探测的需求,设计了一种锂电池热失控试验平台,并利用STM32F103ZET6单片机连接了CO、CO2、H2 和热敏电阻NTC共 4种传感器,实时采集特征参量.同时,利用PyroSim模拟试验环境,生成高质量的模拟数据,以补充试验数据.基于PyTorch平台,设计了一个Transformer神经网络,能够输出锂电池的正常、预警和热失控 3种状态.通过使用试验数据和模拟数据进行训练,实现了对锂电池热失控的融合探测,相比于其他算法有一定的优势.
Thermal runaway multi-data fusion detection of lithium battery based on Transformer neural network
In order to meet the demand for efficient and accurate detection of lithium ion battery thermal runaway,this study de-signed a lithium battery thermal runaway experimental platform.STM32F103ZET6 single chip microcomputer was used to con-nect four sensors such as carbon monoxide,carbon dioxide,hy-drogen and NTC to collect characteristic parameters in real time.At the same time,PyroSim is used to simulate the experimental environment and generate high-quality simulation data to supple-ment the experimental data.Based on the pytorch platform,we designed a Transformer neural network that can output the nor-mal,early warning and thermal runaway states of lithium batter-ies.By using experimental data and simulation data for training,we successfully achieved fusion detection of thermal runaway data of lithium batteries,and verified the effectiveness of the algorithm.

thermal runawaycharacteristic parameterPyroSimPyTorchTransformerdata fusion

丁沐涛、郭世伟、单志林、张启兴

展开 >

中国科学技术大学 火灾科学国家重点实验室,安徽 合肥 230026

热失控 特征参量 PyroSim PyTorch Trans-former 数据融合

国家重点研发计划课题

2021YFC3001601

2024

消防科学与技术
中国消防协会

消防科学与技术

CSTPCD北大核心
影响因子:0.846
ISSN:1009-0029
年,卷(期):2024.43(7)