首页|基于深度学习的隧道火灾火源位置和热释放速率反演

基于深度学习的隧道火灾火源位置和热释放速率反演

扫码查看
火源位置和热释放速率(HRR)是指导隧道火灾消防应急救援的重要信息.但在实际中,得到的关于火场的信息十分有限,很难直接得到火源关键信息.提出了一种基于深度学习的隧道火灾火源位置和HRR的反演方法.首先,基于试验数据验证的数值模拟建立不同边界条件下的隧道火灾数据集.基于卷积神经网络(CNN)和长短期记忆网络(LSTM)建立有限的固定式传感器温度数据和火源位置及HRR之间的映射关系,评估了该模型对于火源位置和HRR的反演效果.评估了时间输入步长和传感器间距对该模型反演性能的影响.结果表明,该模型对HRR和火源位置都有较好的反演性能,当时间输入步长为20 s,传感器间距为30 m时,模型反演HRR和火源位置的R2值分别为0.97和0.99.
Fire source location and heat release rate inversion in tunnel fires based on deep learning
The fire source location and heat release rate(HRR)are crucial information guiding emergency firefighting and rescue operations during tunnel fires.However,in practice,the informa-tion that can be obtained about the fire is limited.It is difficult to get the fire source key parameters directly.Therefore,we re-searched the deep learning-based method for inversing thefire source location and HRR in tunnel fires.Firstly,a tunnel fire data-set under different boundary conditions is established based on nu-merical simulations validated by experimental data.Based on con-volutional neural network(CNN)and long short-term memory network(LSTM),the mapping relationship between fixed tem-perature sensor data and fire source location and HRR was estab-lished.The inversion effectiveness of the model for fire source pa-rameters was evaluated.And the effect of time series length and sensor spacing on the inversion effectiveness were evaluated.The results demonstrate that the model has good inversion perfor-mance for both HRR and fire source location.When the time se-ries length was 20 s and the sensor spacing was 30 m,the R2 val-ues of the model inversion for HRR and fire location are 0.97 and 0.99,respectively.

tunnel firenumerical simulationfire testslong and short-term memory networkheat release ratedeep learning

蒋立、何廷全、郭鑫、阳东

展开 >

重庆大学 土木工程学院,重庆 400045

广西新发展交通集团有限公司,广西 南宁 530000

隧道火灾 数值模拟 火灾试验 长短期记忆网络 热释放速率 深度学习

2024

消防科学与技术
中国消防协会

消防科学与技术

CSTPCD北大核心
影响因子:0.846
ISSN:1009-0029
年,卷(期):2024.43(9)