湖北文理学院学报2024,Vol.45Issue(2) :17-21.

基于ARIMA-LSTM的企业财务长期变化趋势预测算法

A Prediction Algorithm for Long-term Change Trend of Enterprise Finance Based on ARIMA-LSTM

杨静 刘炯
湖北文理学院学报2024,Vol.45Issue(2) :17-21.

基于ARIMA-LSTM的企业财务长期变化趋势预测算法

A Prediction Algorithm for Long-term Change Trend of Enterprise Finance Based on ARIMA-LSTM

杨静 1刘炯1
扫码查看

作者信息

  • 1. 宣城职业技术学院 信息与财经学院,安徽 宣城 242000
  • 折叠

摘要

为了准确预测企业财务长期变化趋势,文章提出一种基于ARIMA-LSTM的企业财务长期变化趋势预测算法.通过设计ARIMA算法模型,并结合LSTM模型架构,实现基于ARIMA-LSTM的企业财务长期变化趋势预测.实验发现文中所设计方法的预测准确性较高,拟合性能更优.

Abstract

In order to accurately predict the long-term change trend of enterprise finance,a prediction algorithm for the long-term change trend of enterprise finance based on ARIMA-LSTM is proposed.By designing ARIMA algorithm model and combining with LSTM model architecture,the long-term change trend prediction of enterprise finance based on ARIMA-LSTM is realized.The experiment found that the designed method has high prediction accuracy and better fitting performance.

关键词

自回归移动平均模型/长短期神经网络算法/企业财务/财务趋势

Key words

autoregressive mobile average model/long and short term neural network algorithm/enterprise finance/financial trend

引用本文复制引用

出版年

2024
湖北文理学院学报
湖北文理学院

湖北文理学院学报

CHSSCD
影响因子:0.164
ISSN:2095-4476
参考文献量17
段落导航相关论文