首页|政府政策注意力:我国多层级政府工作报告(2003-2023年)的议题与演化

政府政策注意力:我国多层级政府工作报告(2003-2023年)的议题与演化

扫码查看
在议题识别和政策设计过程中,如何合理地分配政府政策注意力资源,直接关系到政府的决策结果与行政效能.本文以2003-2023年我国多层级政府工作报告为研究对象,将注意力基础观与国家治理的实际逻辑相融合,立足我国政府的横纵向府际结构与动态治理情境,构建了一个全面覆盖议题、层级、时间、地区等维度的政策注意力分析框架,从而全面刻画政府政策注意力的分布与变迁.采用LDA主题模型和多种统计方法,通过对 6,086 份政府工作报告进行分析,研究发现:经济发展议题在政策注意力分配中占据主导地位,绿色发展议题和公共服务议题的关注度也在稳步提升;不同政府层级间的政策注意力表现出显著的共变趋势,且随着层级升高,其动态变化幅度更为显著;在特定议题的间断期内,焦点议题对其他议题的政策注意力存在明显的挤出效应;政策注意力在地区分布上呈现出明显的异质性,部分议题还显示出邻近效应.
Government Policy Attention:Issues and Evolution of Multi-level Government Work Reports(2003-2023)in China
In the process of issue identification and policy design,how to rationally allocate policy attention resources is directly related to the government's decision-making results and administrative effectiveness.Useing multi-level government work reports from 2003 to 2023 in China as the research object,this study tries to integrate the attention base view with the actual logic of national governance,taking into account the horizontal and vertical inter-governmental structure of China's government and the dynamic governance situation,and attempts to construct a policy attention analysis framework that comprehensively covers the dimensions of issue,level,time,and region,to comprehensively portray the distribution and change of policy attention.By analyzing 6,086 government work reports,LDA topic model and various statistical methods are used.The results show that economic development issues dominate the distribution of policy attention,and the attention to green development and public service issues is also steadily increasing.Policy attention across different levels of government shows significant covariation trends,and the magnitude of dynamic changes is more significant as the level rises.In the intermittent period of a particular issue,there is an obvious crowding out effect of the focus issue on the policy attention of other issues.In addition,the regional distribution of policy attention shows obvious heterogeneity,and some issues also show proximity effects.

Policy AttentionAttention Base ViewGovernment Work ReportLDA Topic Model

李智超

展开 >

上海交通大学 国际与公共事务学院,上海 200030

上海交通大学 应急管理学院,上海 200030

政策注意力 注意力基础观 政府工作报告 LDA主题模型

2024

行政论坛
黑龙江省行政学院

行政论坛

CSTPCDCSSCICHSSCD北大核心
影响因子:1.013
ISSN:1005-460X
年,卷(期):2024.31(6)