首页|ESG评级数据处理的公平和效率问题——以中国房地产企业ESG评级为例

ESG评级数据处理的公平和效率问题——以中国房地产企业ESG评级为例

扫码查看
在可持续发展成为时代话题、ESG理念被引入的背景下,社会对高质量 ESG 数据的需求日益增加.相较于信用评级和财会准则等广泛被应用于衡量企业表现的体系,ESG这一评价维度仍处于发展阶段,其数据披露存在公平性低、可靠性无法保证、透明度不高等缺陷,导致衡量企业ESG表现的工作效率不高,无法及时为利益相关者提供有效信息.本文围绕现有 ESG指标框架,对中国房地产企业的公开数据进行ESG 评级研究,发现企业 ESG 数据存在披露率低、披露标准不一、异常值较多等问题.为提高ESG评级工作中数据处理的效率及公平性,本文针对当前ESG数据分析和使用中存在的问题提出了相应的解决方案,通过应用NLP、聚类、构建函数库等数据科学技术,有效提升了ESG数据处理效率.
Fairness and Efficiency Issues in ESG Rating Data Processing:A Study of ESG Ratings for Chinese Real Estate Enterprises
As sustainable development becomes a topic widely discussed and the ESG concept is introduced,the demand for high-quality ESG data is increasingly rising.Compared to established systems like credit ratings and accounting standards that measure corporate performance,ESG as an evaluation dimension is still in the developmental stage.Issues such as low fairness in data disclosure,lack of reliability,and insufficient transparency lead to inefficiencies in measuring corporate ESG performance,preventing stakeholders from receiving timely and effective information.This paper focuses on the existing ESG indicators framework and conducts an ESG rating study using publicly available data from Chinese real estate companies.It identifies several issues,including low disclosure rates,inconsistent disclosure standards,and numerous outliers.To enhance the efficiency and fairness of data processing in ESG ratings,the paper proposes corresponding solutions to the problems in current ESG data analysis and usage.Applying data science techniques such as NLP,clustering,and building function libraries effectively improves the efficiency of ESG data processing.

ESGData ProcessingFairnessEfficiency

周小康、王驰原、李君研

展开 >

香港大学经管学院

北京大学元培学院

中国政法大学商学院

ESG 数据处理 公平性 效率

2024

新经济
广东省社会科学院港澳研究中心

新经济

影响因子:0.036
ISSN:1009-8461
年,卷(期):2024.(9)